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The games we have discussed up to this point assummenon knowledgabout the structure of the
game, the possible moves (including the probability distributions of chancesgythe players, and their
preferences. In fact, we assumed that the common knowledge abaoaithivess is itself common knowl-
edge. These games cdmplete informatioran be viewed as rough approximations for certain situations
where perhaps the level of uncertainty is low and might be considerdevarg. Generally, however,
players may not possess full information about their opponents, the sitpatibow actions map into out-
comes. They might have some idedgdief, about the relevant factors but not know for sure. We have seen
a version of this with games of imperfect information where players couldimetrve thectual actions
of others but did know what thgossiblemoves could be, and we then required that players form beliefs
about the actions of their opponent that aomsistentith the best-response definition of rationality we
have been using. In these situations, the players are best-responttieg tawn beliefs about what others
might be doing, and these beliefs are derived from the assumption thahérs are best-responding as
well. The definition of Nash equilibrium is, in effect, a requirement abouttresistency of beliefs about
all the players’ strategies. The questions now is: Could this idea be sonsttemded to deal with situa-
tions where players might not know for sure other things about each stieh as preferences, available
actions, or the structure of the game itself?

It turns out that the answer is positive: in the 1960s John C. Harsaaljzed that all kinds of incomplete
information could be represented with the abstract ideplafer types that is, if Player 1 was unsure
about Player 2's preferences, he could imagine that he might be facsfyam several potential “types”
of Player 2, each of whom have her own specific preferences. rtinty about which of these “types”
is actually playing the game is then represented by a probability distributiorttevéypes; that is, Player
1's belief about Player 2’s preferences boils down to a probability witickvhe might be interacting
with a particular type. This transforms incomplete information into a move by ehatihe beginning of
the game—which determines which actual game is being played—and so thetinteteecomes one of
imperfect information, which you already know how to solve. The so-calladanyi transformatiorcan
be applied to any sort of uncertainty: if a player does not know what saxe available to him (or his
opponent), then “chance” would be selecting among games with differetwes, and so on.

1 A Simple Entry Game

To make matters a bit more specific, let us look at an example. There are mgifirsome industry:

an incumbent (player 1) and a potential entrant (player 2). Playerifletearhether to build a plant, and
simultaneously player 2 decides whether to enter. Suppose that playen@eigain whether player 1's
building cost is3 or 0, while player 1 knows his own cost. The payoffs are shown in Fig. 2)(

Enter Don't Enter Don't
Build | 0,—1 | 2,0 Build | 32,—1 | 7,0
Dont | 2,1 3,0 Don't 2,1 3,0
high-cost low-cost

Figure 1: An Entry Game with Incomplete Information.

Player 2’s payoff depends on whether player 1 builds or not (buttisiimectly influenced by player
1's cost). Entering for player 2 is profitable only if player 1 does not buldte that “don’t build” is a
dominant strategy for player 1 when his cost is high. However, playeogdtimal strategy when his cost
is low depends on his prediction about whether player 2 will enter. Denetprtibability that player 2



enters withy. Building is better than not building if

(3)y + (7)1 —y) =2y +3(1 —y)
y =< 1h.

In other words, a low-cost player 1 will prefer to build if the probability thityer 2 enters is less than
1/,. Thus, player 1 has to predict player 2's action in order to choose hisamtion, while player 2, in
turn, has to take into account the fact that player 1 will be conditioning higraon these expectations.

For a long time, game theory was stuck because people could not figuaenaytto solve such games.
However, in a couple of papers in 1967-68, John C. Harsanyi peba method that allowed one to
transform the game of incomplete information into a game of imperfect informatibich could then
be analyzed with standard techniques. Briefly,Hagsanyi transformation involves introducing a prior
move by Nature that determines player 1's “type” (in our example, his ctrat)sforming player 2’s
incomplete information about player 1's cost into imperfect information attwmuimove by Nature.

Letting p denote the prior probability of player 1's cost being high, Fig. 2 (p. Pjiats the Harsanyi
transformation of the original game into one of imperfect information.

High-Cost Nature Low-Cost

(P] [1-p]

0,—1 2,0 2,1 3,0 3h,—1 7H,0 2,1 3,0
Figure 2: The Harsanyi-Transformed Game from Fig. 1 (p. 2).

Nature (or Chance) moves first and “chooses” player 1's type: wibbhadility p the type is “high-
cost” and with probabilityl — p the type is “low-cost.” It is standard to assume that both players have
the same prior beliefs about the probability distribution on nature’s movegePlaknows his own type
(i.e. he learns what the move by Nature is) but player 2 does not. Obsenwéhat after player 1 learns
his type, he has private information: all player 2 knows is that probabilityimof being of one type or
another. It is quite important to note that here playerti&efs are common knowledg&hat is, player
1 knows what she believes his type to be, and she knows that he knogvspaon. This is important
because player 1 will be optimizing given what he thinks player 2 will do, reerdbehavior depends on
these beliefs. We can now apply the Nash equilibrium solution concept toghisgame. Harsanyi's
Bayesian Nash Equilibrium (or simply Bayesian Equilibrium) is precisely the Nash equilibrium of this
imperfect-information representation of the game.

Before defining all these things formally, let’s solve the game in Fig. 2 (pPByer 2 has one (big)
information set, so her strategy will only have one component: what to desantbrmation set. Note
now that player 1 has two information sets, so his strategy must specifytavliatif his type is high-cost
and what to do if his type is low-cost. One might wonder why player 1's gjyatas to specify what to do
in both cases, after all, once player 1 learns his type, he does not batégwould have done if he is of
another type.



The reason the strategy has to specify actions for both types is roughllygans for the reason the
strategy has to specify a complete plan for action in extensive-form gailittes€emplete information:
player 1's optimal action depends on what player 2 will do, which in turreddp on what player 1 would
have done at information sets even if these are never reached in equilitbiere, player 1 knows his cost
which is, say, low. So why should he bother formulating a strategy for tbe-éxistent) case where his
cost is high? The answer is that to decide what is optimal for him, he hasdzipnéhat player 2 will do.
However, player 2 does not know his cost, so she will be optimizing on tsie baher expectations about
what a high-cost player 1 would optimally do and what a low-cost playeodldvoptimally do. In other
words, the strategy of the high-cost player 1 really represents pl&yex@ectations.

The Bayesian Nash equilibrium will beteple of strategies: one for player 1 of the high-cost type,
another for player 1 of the low-cost type, and one for player 2. Irliegum, no deviation should be
profitable.

1.1 Solution: The Strategic Form

Let's write down the strategic form representation of the game in Fig. 2 ([Player 1's pure strategies
areS; = {Bb, Bd, Db, Dd}, where the first component of each pair tells his what to do if he is the
high-cost type, and the second component if he is the low-cost typeerldas only two pure strategies,
S> = {E, D}. The resulting payoff matrix is shown in Fig. 3 (p. 4).

Player 2
E D
Bb 3/p—3rhH,—1 T/ — 3P/,0
Bd 2—-2p,1=2 3—p,0
Player 1 P b P
Db | 3L+ Ph,2p—1 7/ — P/, 0
Dd 2,1 3,0

Figure 3: The Strategic Form of the Game in Fig. 2 (p. 3).

Db strictly dominatesBb and Dd strictly dominatesBd. This should not be surprising: since the
high-cost type has a strictly dominant strategy not to build, no Nash equitibnould permit him to
build, which is why all strategies that involve him doing so just got eliminatedndng the two strictly
dominated strategies reduces the game to the one shown in Fig. 4 (p. 4).

Player 2
E D
Db | 3+ Ph,2p—1 7/2 — P/, 0
Player 1
Dd 2,1 3,0

Figure 4: The Reduced Strategic Form of the Game in Fig. 2 (p. 3).

If player 2 choose#, then player 1’'s unique best response is to chdegeregardless of the value of
p < 1. Hence(Dd, E) is a Nash equilibrium for all values gf € (0, 1).

Note now thatE strictly dominatesh) whenevelp —1 > 0 = p > 1/, and so player 2 will never mix
in equilibrium in this case. Let’s then consider the cases when 1/,. We now also havéDb, D) as a
Nash equilibrium.



Suppose now that player 2 mixes in equilibrium. Since she is willing to randomize,

U2(E) = U2(D)
01(Db)(2p —1) + (1 —01(Dh))(1) =0

O'](Db) = 2(1——p)

Since player 1 must be willing to randomize as well, it follows that

Ui(Db) = Uy(Dd)
02(E)(P2 + 2/2) + (1 = 02(E)) (/2 = P/2) = 202(E) + 3(1 — 02(E))
02(E) = 2.

Hence, we have a mixed-strategy Nash equilibrium wittDb) = ﬁ, ando,(E) = 1/ whenever
p < /. The upper bound op follows from the requirement that; (Db) < 1. It is not surprising in
light of the fact that most well-behaved games either have an odd numbkasbfequilibria or infinitely
many. Since this game only has two PSNE wher: 1/, we should expect the MSNE to exist only in
these cases as wéll.

Summarizing the results, we have the following Nash equilibria:

¢ Neither the high nor low cost types build, and player 2 enters;
e If p < 1/, there are two types of equilibria:

— the high-cost type does not build, but the low-cost type does, andri@aj@es not enter;

— the high-cost type does not build, but the low-cost type builds with pritityah /[2(1 — p)],
and player 2 enters with probability>.

Intuitively, the results make sense. The high-cost type never buildseteorithg player 2's entry can
only be done by the low-cost type’s threat to build. If player 2 is expeteghter for sure, then even
the low-cost type would prefer not to build, which in turn rationalizes heisilen to enter with certainty.
Deterrence fails with certainty here but at least no plant is being built {ilavMoave been wasteful to do
so given her entry). This result is independent of her prior beliefs.

If, on the other hand, her prior belief is pessimistic enough (she belieaethtihlikelihood of the high-
cost type is sufficiently low, op < 1/5), then deterrence becomes possible, and there are two equilibria. In
one, the low-cost type builds for sure, and given her pessimistic pplarger 2 is unwilling to run the risk
of entry, so she stays out for sure as well. In the other, the low-costhyijds with positive probability,
which means that player 2 can no longer be deterred with certainty: theehahnot facing a plant are
high enough to make her willing to mix as well, and the uncertainty about her agtiturn, rationalized
the mixed strategy for the low-cost type of player 1. Deterrence can ifai|,raoreover, it is possible that
player 2 ends up entering a market where a plant has been built, givthgplayers the worst possible
payoffs with positive probability. Thus, unlike the PSNE with deterrenderfs the MSNE does involve
building a plant thaex postturns out to have been a waste.

IThere is a continuum of MSNE if = 1/, but this is a knife-edge condition so we shall ignore it. A “knife-edge @
refers to a requirement that an exogenous variable takes on spetifesv Any solution that depends on such a requirement
is extremely unstable since even the tiniest change in the value of thatlgasidlowipe it out. Moreover, if we think of these
variables as being drawn from continuous distributions, then the probahgitghey take on any specific value is zero.



1.2 Solution: Best Responses

Noting that the high-cost player 1 never builds, tetienote the probability that the low-cost player 1
builds. As before, lety denote player 2's probability of entry, and observe that the low-cosepla
strictly prefers building to not building when the expected utility of building extsthe expected utility
of not building:

Ui (B|L) > Ui(D]|L)
3+ 7= > 2y +3(1 —y)
y<1h

Player 2 prefers to enter when the expected utility of doing so exceedgpbeted utility of not entering:

Ux(E) > Ux(D)
pU2(E|H) + (1 = p)Ua(E[L) = pUx(D|H) + (1 — p)Ua(D|L)
p)+(A=p)(—x+1-x)=0
1-2x+2px >0
1

x < =X
2(1-p)
We can write the best responses as follows:
1 if y <1h 1 if x <X
BRi(y|L) = 11[0,1] ify =1/ BRy(x) = {[0,1] ifx=%X
0 if y>1h 0 if x >X%

1
2(1-p)

Given these best-responses, the search for a Nash equilibrium bwifstddinding a pair(x, y), such
thatx is optimal for player 1 with low cost against player 2 and optimal for player 2 against player 1
given beliefsp and player 1's strategyr(for the low cost and “don’t build” for the high cost). (We are,
technically speaking, looking for a triple because the strategy of the lightype must also be included.
However, since it is strictly dominant for that type to not build, we do nothawkeep writing it down.)

Suppose first thay > 1/ in some equilibrium, in which case = BR;(y) = 0 < x. But then
y = BRy(x) = 1, and so we have our first PSNH, 1). This is the equilibrium, in which player 1 does
not build irrespective of his type, and player 2 enters with certainty.

Suppose next that < 1/ in some equilibrium, in which case = BRy(y) = 1. If 1 < ¥, then
y = BRy(1) = 1 contradicts the supposition, so there can be no equilibrium here. So it mukab
1 > X, in which casey = BR,(x) = 0, and so we have our second PSNE:0). This only exists if
1 > X, or p < 1. This is the equilibrium, in which player 1 builds with certainty if he is the low-cost
type, and player 2 is deterred from entering.

Finally, suppose thay = % in some equilibrium, in which case = BR;(y) € [0, 1], so the low-
cost type can mix. Since player 2 is willing to randomize, it must be that X, which is only a valid
probability if p < 1/. This recovers the MSNE, in which the low-cost type builds with probalbiljtgnd
player 2 enters with probability/.

This yields the full set of equilibria.

where X =



1.3 Interim vs. Ex Ante Predictions

Suppose in the two-firm example player 2 also had private information and be of two types, “ag-
gressive” and “accommodating.” If she must predict player 1's typ&tingent strategies, she must be
concerned with how an aggressive player 2 might think player 1 wouldfptaach of the possible types
for player 1 and also how an accommodating player 2 might think player 1 waaldfor each of his
possible types. (Of course, player 1 must also estimate both the aggrassivaccommodating type’s
beliefs about himself in order to predict the distribution of strategies heldleapect to face.)

This brings up the following important question: How should the differerésypt player 2 be viewed?
On one hand, they can be viewed as a way of describing differentiatton sets of a&ingle player 2
who makes a type-contingent decision at ¢heantestage. This is natural in Harsanyi's formulation,
which implies that the move by Nature reveals some information known only tonf#ayhich affects her
payoffs. Player 2 makes a type-contingent plan expecting to carryneubbthe strategies after learning
her type. On the other hand, we can view the two types as two differeabtafjone of whom is selected
by Nature to “appear” when the game is played.

In the first case, the singkx anteplayer 2 predicts her opponent’s play at theantestage, so all types
of player 2 would make the same prediction about the play of player 1. Uhdexecond interpretation,
the different “agents” would each make her prediction afnherim stage after learning her type, and thus
different “agents” can make different predictions.

It is worth emphasizing that in our setup, players plan their actiefsrethey receive their signals, and
SO we treat player 2 as a singdg anteplayer who makes type-contingent plans. Both the aggressive and
accommodating types will form the same beliefs about player 1. (For moredatiftrent interpretations,
see Fudenberg & Tirole, section 6.6.1.)

2 Bayesian Nash Equilibrium

A static game of imperfect information is calledBayesian gameand it consists of the following ele-
ments:

e asetof playersiy = {1,...,n}, and, for each playere N,

e a set of actionsd;, with the usuald = x;en A4;,

a set of types@;, with the usuab) = x;cy ®;,

a probability function specifying’s belief about the type of other players given his own type;
®i — A(@)_i),

a payoff functiony; : A x ® — R.

Let's explore these definitions. We want to represent the idea that éagér fknows his own payoff
function but may be uncertain about the other players’ payoff functitves 6; € ®; be some type of
playeri (and so®; is the set of all player types). Each type corresponds to a different payoff function
that playeri might have.

We specify the pure-strategy spadge (with elements:; and mixed strategies; € +;) and the payoff
functionu;(ay,...,a,101,...,6,). Since each player’s choice of strategy can depend on his type, we let
si (6;) denote the pure strategy playiechooses when his type & (o; (6;) is the mixed strategy). Note
that in a Bayesian game, pure strategy spaces are constructed frorpdlantyaction spaces: Playés
set of possible (pure) strategifsis the set of all possible functions with domai and ranged;. That
is, S; is a collection of functions; : ®; — A;.



If playeri hask possible payoff functions, then the type space hadements, #0;) = k, and we
say that player hask types. Given this terminology, saying that playémows his own payoff function
is equivalent to saying that he knows his type. Similarly, saying that playeay be uncertain about
other players’ payoff functions is equivalent to saying that he may bertain about their types, denoted
by 6_;. We use®_; to denote the set of all possible types of the other players and use thabpityb
distribution p; (6—; |6; ) to denote playei’s belief about the other players’ typés;, given his knowledge
of his own typeg; .2 For simplicity, we shall assume th@;; has a finite number of elements.

If playeri knew the strategies of the other players as a function of their type, thatksigw{o; ()}, 4,
playeri could use his beliefg; (6_;|6;) to compute the expected utility to each choice and thus find his
optimal response; (6;).2

Following Harsanyi, we shall assume that the timing of the static Bayesian garsefoficavs: (1)
Nature draws a type vectér = (04, ..., 6,), whered; is drawn from the set of possible typ@gs using
some objective distributiop that is common knowledge; (2) Nature reveglgo playeri but not to any
other player; (3) the players simultaneously choose actions, plajeoses from the feasible s¢f; and
then (4) payoffss; (a1, ..., a,|0) are received.

Since we assumed in step (1) above that it is common knowledge that Nadwre tthe vectof from
the prior distributionp(8), playeri can use Bayes’ Rule to compute his posterior bepigb_; |6;) as

follows:

(0—i,0i) p(0—i,0;)
p(6:) Y0 o, P(O-i0;)
Furthermore, the other players can compute the various beliefs that plenght hold depending ofis
type. We shall frequently assume that the players’ types are indepeimdesich casep; (6—;) does not
depend or®; although it is still derived from the prior distributign(f).

Now that we have the formal description of a static Bayesian game, we waldfitee the equilib-
rium concept for it. The notation is somewhat cumbersome but the intuition issaoh player’s (type-
contingent) strategy must be the best response to the other playergjisgatéhat is, 8ayesian Nash
equilibrium is just a Nash equilibrium in a Bayesian game.

Given a strategy profile(-) and a strategy;(-) € S; (recall that this is a type-contingent strategy, with
s; € Si, wheresS; is the collection of functions; : ®; — 4;), let(s;(-), s—; (-)) denote the profile where
playeri playss;(-) and the other players follow; (-), and let

(57(0:).5-i(6-1)) = (s1(O1). ... 5i—1(0;—1). 57 (0;).8i +1(Bi+1). . ... SN (ON))
denote the value of this profile &t= (6;, 6—;).

pi(6_]6;) = 2

DEFINITION 1. Let G be a Bayesian game with a finite number of tyggsfor each playet, a prior
distribution p, and strategy spaces. The profiles(-) is a (pure-strategyBayesian equilibrium of G if,
for each playef and eveny; € ©;,

si(6;) € arg max > Ju; (57, 5~ (0010, 6—) p(0-i10h).
S; i o

that is, no player wants to change his strategy, even if the change inwuliyesne action by one tyge.

2|n practice, the players’ types are usually assumed to be independerfiicim casep; (/—; |6;) does not depend ofy, and
so we can write the beliefs simply ag(6_;).

3This is where the assumption th{ is finite is important. If there is a continuum of types, we may run into meahaeretic
problems.

4The general definition is a bit more complicated but we here have usadsheption that each type has a positive probability,
and so instead of maximizing tlex anteexpected utility over all types, playémaximizes his expected utility conditional on
his type#; for eaché;.



Each type-contingent strategy is a best response to the type-contgtgeagies of the other players.
Playeri calculates the expected utility of playing every possible type-contingemegira (6;) given his
type 6;. To do this, he sums over all possible combinations of types for his oppxen, and for each
combination, he calculates the expected utility of playing against this particetiaf ®pponents: The
utility, u; (s, s—i (6—-;)|6;,6—;), is multiplied by the probability that this set of opponefits is selected
by Nature: p(6—;|6;). This yields the optimal behavior of playewhen of typef;. We then repeat the
process for all possiblé € ®; and all players.

It is easy to extend this definition to infinite type spaces. For example, septeger 1 was uncertain
about player 2's payoffs, but believed they fall within some range. \&elavthen define player 2's types
as that range®, = [Qz,éz], with player 1's beliefs being represented by a well-defined densitytitmc
f2(+), over that interval. We shall see an example of this shortly.

The existence of a Bayesian equilibrium is an immediate consequence ofdteneg of Nash equilib-
rium.

2.1 An Example of Notation

You are player 1 and you are playing with two opponedtsnd B. Each of them has two types. Player
A can be either with probability p4 or 7§ with probability 1 — p4, and player be can be eithgy with
probability pp or z3 with probability 1 — p. Each of these types has two actions at his disposal. Piayer
can choose either; ora,, and playerB can chooses eithér or b,. You can choose from actions, ¢2,
andc3 and you can be one of two types, or 62.

We let player 1 be player and use Definition 1. First defire_;, the set of all possible combination
of opponent types. Since there are two opponents with two types each,ateefour combinations to
consider:

©-1 = {(ta-1p) . (14-13) - (t7.15) . (1. 15)}
Of course,®; = {01, 02}. For each¥; € ©1, we have to define;(6;) as the strategy that maximizes
player 1's payoff given what the opponents do when we considenaliple combinations of opponents
types,®_;.

Note that the probabilities associated with each type of opponent allow déagpecalculate the prob-
ability of a particular combination being realized. Since the two player typesrarerrelated, the joint
probabilities are just the multiple of each individual probability, which givethe following probabilities
p(0-1101):

p(ti.tp) = pPaPB p(t3.t5) = (1 — pa)pp
p(ti.13) = pa(l — pp) p(e3,12) = (1 - pa)(1 - pp)

where we suppressed the conditioningddrbecause the realizations are also independent from player 1's
own type.

We now fix a strategy profile for the other two players to check playerdtistl strategy for that profile.
The players are using type-contingent strategies themselves. Givenrttieenof available actions, the
possible (pure) strategies arg(t;) = s4(t3) € {a1.a2}, andsg(ty) = sp(t3) € {b1.b2}. So, suppose
we want to find player 1's best strategy against the profile where bo#s typplayerd choose the same
action,s4(14) = s4(t3) = a1, but the two types of playeB choose different actionsz(t3) = by, and
s(15) = by.

We have to calculate the summation oveall, of which there are four. For each of these, we calculate
the probability of this combination of opponents occurring (we did this abawd)hen multiply it by the
payoff player 1 expects to get from his strategy if he is matched with thetieudar types of opponents.



This gives the expected payoff of player 1 from following his strategiresi opponents of the particular
type. Once we add all the terms, we have player 1's expected payoftHi®strategy.
So, suppose we want to calculate player 1's expected payoff fronmglay(8!) = c1:

ui (c1, SA(ZJ),SB(QI;)) P(l,i, lzlg) +ux (Cl,SA(lj),SB(Q%)) P(l,i, lzzg)
+u1 (c1,54(t7), sB(tg)) p(t3. 1) +ui (c1,54(t3), sB(t3)) P(t5.15),

or simply:

ui (c1,a1,b1) papp +ui(c1,a1,b2) pa(1 — pp)
+uq (c1,a1,b1) (1 — pa)pp + u1 (c1.a1,b2) p(1 — pa)(1 — pB).

We would then do this for actions andcs, and then pick the action that yields the highest payoff from
the three calculations. This is the arg max strategy. That is, it is the stratagydikamizes the expected
utility.® This yields typed! the best response to the strategy profile specified above.

We shall have to find the optimal response to this strategy profile if playerfiyp@6§2. We then have
to find playerA’s and playerB’s optimal strategies given what they know about the other players. Once
all of these best responses are found, we can match them to see whatiiute profiles with strategies
that are mutual best responses. That is, we then proceed as heliere we found best responses and
equilibria in normal form games.

2.2 From Common Priors to Uncommon Posteriors

The definition of a Bayesian game requires that players start witimemon prior beliefabout the possible
distribution over the chance moves (“choices” by Nature). Once eagbmtaivately learns his own type,
it is possible that this information also conveys something about the probabilftik® other players’
types. If this is the case, then not only the play@csterior beliefabout his own type will be different
from the estimates of the other players about him, but his beliefs about tee mityers will also be
different from his priors.

Consider first an example, in which learning one’s own type does nefagyers any additional insight
into the types of the others. Imagine there are two players, player 1 andr®@aynd that for each
player there are two possible types. Playsmpossible types arg € {6;,0]}. Suppose that the types are
independently distributedith Pr(z; = 6;) = p and Pfr, = 6,) = ¢g. This assumption means that after
learning one’s own type, players retain their priors about the type ofttier player. For instance, in a
crisis bargaining model, the type might be a player’s valuation of the issuehwhs nothing to do with
how much the other player values it. In this case, for a given strategyeptdfi s> ), the expected payoff
of player 1 of typed; is simply:

qui(s7(01),55(62)101.602) + (1 — @)ui(s7(61).55(05)]61, 63),

and for a given mixed strategy profile;, 05), the expected payoff of player 1 of typg is:

q Y of(@]01)03 (@2102)u1(ar.a21601.02) + (1 —q) Y _ o7 (a1161)05 (a2105)u1(ay., az|61.65).

acA acA

SUnlike the max of an expression which denotes the expression’s maximhen the expression is evaluated, the arg max
operator finds thearameter(s)for which the expression attains its maximum value. In our case, theaacgimply instructs us
to pick the strategy that yields the highest expected payoff when matgag@tsathe profile of opponent’s strategies.
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In each case, we simply used the prior beliefs about the possible typdayef 2 because player 1's
knowledge of his own type did not tell him anything new about player 2's typ Bayesian equilibrium
will consist of four type-contingent strategies, one for each type of each player. Sonibégunay
depend on particular values pfandg, and others may not.

Imagine now that the types of players are correlated. For instance,isisliargaining model a player’s
type could be his probability of winning the war. If there is one true undeglpirobability of victory for
a player, then learning something about one’s own likelihood of victory@seeys something about the
opponent’s type. Suppose that in our example the types occur in combmatittnprior probabilities as
shown in Fig. 5 (p. 11). These are common knowledge.

Player 2’s type
0, 65
6, | 1 1
Player 1's type | e | s
9{ 13| g

Figure 5: Prior Distribution over the Types.

Suppose now that player 1 learns that his typ&,isWhat should his belief about player 2's type be?
The prior distribution defines the joint probabilities(m z—;), which in turn gives the unconditional
probabilities like Pty = 01) = Pr(t; = 01 Ntp = 62) + Pr(ty = 61 Nty = 60)) = o+ 1/3 = 1/2. The
conditional probability formula (Bayes rule) yields:

Pritg =0Nta=0602) s

= - = =1, ="
Pr(r2 = 02|ty = 01) Pr(t; = 61) ) 8

In other words, upon learning that his typedis player 1 must update to believe that the probability that
player 2's type isf, is 15 from his prior belief that it wash. The other posterior beliefs are defined
analogously.

3 Some Simple Games

3.1 Myerson’s Exercise 3.5

Two players are not sure which of the two games, whose payoff matiieeshawn in Fig. 6 (p. 11),
is being played. It is common knowledge that the probability that the game is Gaisé6.4, and the
information is symmetric (that is, neither player knows anything that the othgempites not know).

Player 2 Player 2
L R L R
ul2 2|-2,0 uil|o 2| 1,0
Player 1 Player 1
D |0,-2 0,0 D|1,-2] 2,0
Game A (.9) Game B (.1)

Figure 6: Myerson’s Exercise.

Unlike our earlier example, where player 1 knows his own type, in this gantoég not (note that
player 2's payoffs are the same in both games). This actually makes the gamesasier to solve because
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after the initial move by Nature that selects the game, each player has onipforreation set. The
expected payoffs are:

Up(U L) =2(.9) +0(.1) = 1.8 Uy(U, L) = 2(.9) + 2(.1) =2
Ui(U,R) = —2(.9) + 1(.1) = —1.7 Us(U,R) =0

Uy(D,L) =0(.9) + 1(.1) = 0.1 Uy(D,L) = —2

Ui (D, R) = 0(.9) +2(.1) = 0.2 Uy(D, R) = 0.

The resulting payoff matrix for the Bayesian game is shown in Fig. 7 (p. 12).

Player 2
L R

1.8, 2| -1.7,0
0.1,-2 0.2,0

U
Player 1

Figure 7: The Strategic Form of the Game from Fig. 6 (p. 11).

There are two Nash equilibria in pure strategigs, L) and (D, R), and a mixed strategy equilibrium
(12[U]. 19/36[L]).

This is an interesting result because in two of these equilibria, player Zekbaowith positive prob-
ability. If you look back at the original payoff matrices in Fig. 6 (p. 11), tiay surprise you because
(D, R) is a Nash equilibrium in both separate games (it is the unique equilibrium in Gar@mB)e other
hand, the result is perhaps not surprising becgtsé.) in Game A is Pareto-dominant, and because of
the very high likelihood that this game is the one being played it is also the Réoetmant outcome in
the Bayesian game.

Another interesting aspect of this game is that if we relax the common knowésdgenption (about the
probabilities with which the games are played), then there will be no Bayegialibeium where player 2
would choosd.. (This is a variant of Rubinstein’s electronic mail game.)

3.2 The Lover-Hater Game

Suppose that player 2 has complete information and two types)d H. Type L loves going out with
player 1 whereas typ#l hates it. Player 1 has only one type and is uncertain about player 2’stgpe a
believes the two types are equally likely. We can describe this formally asesBaygame:

e Players:N = {1,2}
Actions: A; = A, = {F, B}

Types:©1 = {x}, O = {[, h}

Beliefs: p1(I|x) = p1(h|x) = Y, p2(x|l) = pa(x|h) =1
e Payoffs:uy,u, as described in Fig. 8 (p. 13).

We shall solve this game using two different methods.
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F B f b
F12,1]00 F|201]0,2

B|00|1,2 B|0,1]|10

Player 2’s type id. Player 2’s type isH

Figure 8: The Lover-Hater Battle of the Sexes.

3.2.1 Solution: Conversion to Strategic Form

We can easily convert this to strategic form, as shown in Fig. 9 (p. 13).ininsediately clear thaBb
strictly dominatesF' f for player 2, so she will never use the latter in any equilibrium. Finding theE°SN
is easy by inspection{F, Fb). We now look for MSNE. Observe that player 2 will always plBy
with positive probability in every MSNE. To see this, suppose that theréses@ne MSNE, in which
02(Bb) = 0. But if she does not plagb, thenF strictly dominatesB for player 1, so he will choosg,

to which player 2's best responsefi$. That is, we are back in the PSNE, Fb), and there’s no mixing.

Player 2
Ff Fb Bf Bb
2,1 | 1,3 1,0 0,1

0,1/ 15,0 | 15,3/ 1,1

F
Player 1
B

Figure 9: The Lover-Hater Game in Strategic Form.

We conclude that in any MSNE, (Bb) > 0. We now have three possibilities to consider, depending
on which of the remaining two pure strategies she includes in the suppagt efjnilibrium strategy. Let
p denote the probability that player 1 choogeésand use the shortcuds = 02(Fb), g2 = a2(Bf), and
g3 = 02(Bb). We now examine each possibility separately:

e Supposey; = 0 andg, > 0, which impliesgs = 1 — ¢». Since player 2 is willing to mix between
Bf and Bb, her expected payoffs from these pure strategies must be equal. (5itreeBb) = 1
andU(p, Bf) = (3k)(1 — p), this impliesl = 3(1 — p)/2 = p = /5. Thatis, player 1
must be willing to mix too. This means the payoffs from his pure strategies muejum. Since
Ui(F.q2) = g2 andUi(B. q2) = (12)q2 + 1(1 —¢2), thisimpliesgz = (12)g2 +1—g2 = q2 =
2/3. We only need to check that = 0 is rational, which will be the case f,(p, Fb) < U,(Bb).
SinceU,(p, Fb) = (3/2)p = /2 andU,(Bb) = 1, this inequality holds. Therefore, we do have
a MSNE:(p = 1/5,(q2 = 2/3,q93 = 1/3)). In this MSNE, player 1 choose&s with probability 1/3
and player 2 mixes betwed®f and Bb; that is, she chooseR if she is theL type, and chooseg
with probability 2/3 if she is theH type.

e Suppose; > 0 andg, = 0, which impliesqgs = 1 —¢;. Since player 2 is willing to mix, it follows
thatU,(p, Fb) = (3)p = 1 = Ua(p, Bb). This impliesp = 2/3, so player 1 must be mixing too.
For him to be willing to do so, it must be the case that his payoffs from thegitategies are equal.
SinceU; (F, q2) = q1 andU; (B, ¢2) = (1/2)q1 + 1(1 —¢q1), thisimpliesq; = 2/3. We only need to
check if player 2 would be willing to leave otf. SinceU,(p, Bf) = (3/2)p = 1 = Ux(p, Bb),
including that strategy will notimprove her expected payoff. Therefoeedo have another MSNE:
(p = 2/3,(q1 = 2/3,93 = 1/3)). In this MSNE, player 1 choosds with probability 2/3 and player
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2 mixes betweerF'b and Bb; that is, she choosek with probability /3 if she is theL type, and
choose9 if she is theH type.

e Supposeg; > 0 andg, > 0. Since player 2 is willing to mix, it follows that/>(p, Fb) =
Ux(p, Bf) = Ux(p, Bb) = 1. SinceU,(p, Fb) = (3)p = Ua(p, Bf) = 3/2(1 — p), it follows
that p = 14. However, fromU,(p, Bf) = Ux(p, Bb) we obtain(3)(1 — 1) = 3/4 < 1 =
U, (p, Bb), a contradiction. Therefore there is ho such MSNE.

We conclude that this game has three equilibria, one in pure strategies antehein mixed.

3.2.2 Solution: Best Responses

Since player 1 has only one type, we suppress all references to hisroypenow on. Let's begin by
analyzing player 2’s optimal behavior for each of the two types. jLdenote the probability that player
1 chooses, ¢, denote the probability that the type choosed, andg, denote the probability that the
H type chooseg’. Observe that; andg, do not mean the same thing they did in the previous method
(where they designated probabilities for pure strategies). In otherswordhe strategic-form method,
these were elements of a mixed strategy. Here, they are elements of a balhsivabegy.

Let’s derive the best response for player 2. If she’s typehe expected utility from playind” is
Ur(p, F) = p, while the expected utility from playin® is Uz (p, B) = 2(1 — p). Therefore, she will
chooseF wheneverp > 2(1 — p) = p > 2/3. This yields the best response:

g1 =1 if p> 2/
BRL(p) = {q1 €[0,1] if p=2/3
q1=0 if p <2/

If she is of typeH , the expected payoffs até; (p, F) = 1 — p andUg (p, B) = 2p. Therefore, she will
chooseF wheneverl — p > 2p = p < 1/3. This yields the best response:

g2 =1 it p <1/
BRy(p) = yq2€[0,1] if p=1/
qz2 = 0 if p > 1/3

Finally, we compute the expected payoffs for player 1:

Ui(F.q192) = (12) 291 + 0(1 —q1)] + (12) 292 + 0(1 — q2)] = g1 + 92
Ui1(B,q192) = (12) [0g1 + 1(1 —q)] + (12) [0g2 + 1(1 —q2)] = 1 — (g1 + q2)/2.

Hence, choosing is optimal whenevey; +¢> > 1 — (g1 + q2)/2 = q1 + g2 > 2/3. This yields player
1's best response:

p=1 if g1 +q2 > 2/3
BRi(q192) = {p €[0,1] ifq1+qg2=72/
p=0 if g1+ g2 < /3
We now must find a triplé p, g1, ¢») such that player 1's strategy is a best response to the strategies of

both types of player 2 and each type of player 2’s strategy is a bestnsspo player 1's strategy. Let's
check for various types of equilibria.
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Can it be the case that player 1 uses a pure strategy in equilibrium? Tleergoacases to consider.
Supposep = 0, which impliesq; + ¢> < 2/3 from BR;. We now obtairy; = 0 from BR, andg, = 1
from BRy, which meang; + ¢g> = 1, a contradiction. Hence, there is no such equilibrium.

Suppose now = 1, which impliesg; + ¢> > 2/3. We now obtaing; = 1 from BR, andg, = 0
from BRy, which meang;; + g> = 1. This satisfies the requirement for player 1's strategy to be a best
response. Therefore, we obtain a pure-strategy Bayesian equilibffunib).

In all remaining solutions, player 1 must mix in equilibrium. Since he is willing to rBi®; implies
thatg, +¢> = 2/3 (otherwise he’d play a pure strategy). This immediately means that it caatio¢lzase
that player 2 chooses the fight, whatever her type may be. To see thighabiEsome type goes to the
fight for sureg; + g> > 1, which will contradict the requirement that allows player 1 to mix. Theregfore
g1 < 1 andg, < 1. It also cannot be the case that neither type goes to the fight becats@ttd imply
q1 + g2 = 0, which also cannot be true in a MSNE. Therefore, either- 0, or g, > 0, or both. Let’s
consider each separately:

e Supposey; = 0 andg, > 0: since H is willing to mix, BRy implies thatp = 1/3 and since
g1 = 0, BRy implies p < 2/3. Therefore,p = 1/3 will make these strategies best responses.
To get player 1 to mix, it has to be the case that= 2/3. This yields the following MSNE:
(p = 1,(q1 = 0,92 = 2/3)). In this equilibrium, player 1 choosds with probability 1/3, player
2 picks B if she’s theL type and picksf” with probability 2/5 if she is theH type.

e Supposey; > 0 andg, = 0: sincelL is willing to mix, BR;, implies thatp = 2/3 and since
q>» = 0, BRy implies thatp > 1/3. Therefore,p = 2/3 will make these strategies best re-
sponses. To get player 1 to mix, it has to be the casegthat 2/3. This yields another MSNE:
(p = 2/3,(q1 = %/3,42 = 0)). In this equilibrium, player 1 choosds with probability 2/3, player
2 picks F with probability 2/3 if she’s theL type and pick® if she is theH type.

e Supposey; > 0 andg, > 0: sincel is willing to mix, BRy implies thatp = 2/3 but sinceH is
also willing to mix,BRg implies thatp = 1/3, a contradiction. Therefore, there is no such MSNE.

This exhausts the possibilities, and voila! We conclude that the game hastuiibria, one in pure
strategies and two in mixed strategies. Clearly, these solutions are the samendewiith the other
method.

Which method should you use? Whatever works for you! In generalebheryvthe best-response method
is often more convenient despite the apparent difficulty in multiplying the types&/responses must be
considered. This is because when one is considering the best resoneach type, the strategies for all
other types are held constant.

3.3 The Market for Lemons

If you have bought or sold a used car, you know something about tsaskla asymmetric information.
Typically, the seller knows far more about the car he is offering than tigerb@enerally, buyers face a
significant informational disadvantage. As a result, you might expecbthadrs will tend not to do very
well in the market, making them cautious and loath to buy used cars, in turn nstlags worse off when
the market fails due to lack of demand.

Let’s model this! Suppose you, the buyer, are in the market for a usedr¥oa meet me, the seller,
through an add in thBenny Pinchefnever a good place to look for a good car deal), and | offer you an
attractive 15-year ol¢Firebird for sale. You love the car, it has big fat tires, it peels rubber when ytou h
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the gas, and it's souped up with a powerful 6-cylinder engine. It alsnd®cool and has a red light in the
interior. You take a couple of rides around the block and it handles likeanaft

Then you suddenly have visions of the souped up engine exploding@amihl you up to smithereens,
or perhaps a tire getting loose just as you screech around that pallicldagerous turn on US-1. In any
case, watching the fire-fighters dowse your vehicle while you cry atiHear watching said fire-fighters
scrape you and your car off the rocks, is not likely to be especially amu$ngyou tell me, “The car
looks great, but how do | know it's not a lemon?”

I, being completely truthful and honest as far as used car dealersecaraturally respond with “Oh!
I've taken such good care of it. Here're are all the receipts from thelae oil changes. See? No receipts
for repairs to the engine because | haewer had problemwith it! It's a peach, trust me.”

You have, of course, taken my own course on repeated games ang $&-Ba! But you will not deal
with me in the future again after the sale is complete, and so you have no intecestperating today
because | cannot punish you tomorrow for not cooperating today!withsay whatever you think will
get me to buy the car.”

| sigh (Blasted game theory! It was so much easier to cheat people Hedacktell you, “Fair enough.
TheBlue Bookvalue of the car i® > 0 dollars. Take a look at the car, take a couple of more rides around
the block if you wish and then decide whether you are willing to payBilue Bookprice and | will decide
whether to offer you the car at that price.”

We shall assume that if a car is peach, it is watfyou, the buyer) $3,000 and worfh(me, the seller)
$2,000. If it is a lemon, then it is worth $1,000 B and $0 toS. In each case, your valuation is higher
than mine, so under complete information trade should occur with the surpfiis@fi0 divided between
us. However, there is asymmetric information. | know the car's conditiorlewlou only estimate that
the likelihood of it being a peach is € (0,1). Each of us has two actions, to trade or not trade at the
market pricev > 0. The market price i < $3,000, so a trade is, in principle, possible. (If the price
were higher, the buyer would not be willing to purchase the peach evenkihéw for sure that it was a
peach.) We simultaneously announce what we are going to do. If we bathtel#ade, then the trade
takes place. Otherwise, | keep the car and you go home to deplore thefeisitianeous-moves games.
The situation is depicted in Fig. 10 (p. 16) with rows for the buyer and coldomike seller (payoffs in
thousands).

S S
T N t n
T |3—v,v 0,2 T |1—v,v 0,0
B B
0,2 0,2 N 0,0 0,0
peach lemon

Figure 10: The Market for Lemons.

Let’s derive the best responses. H&rean be thought of as having two typdsjf her car is a lemon,
and P if her car is a peach. Fix an arbitrary strategy for the buyerpléeenote the probability that he
elects to trade, and calculate seller’s best responses (the probabilghéhettooses trade) as a function of
this strategy. Let;; denote the probability that a seller with a peach tradesgardknote the probability
that a seller with a lemon trades.

The seller with a peach will géip (p, T) = pv 4+ 2(1 — p) if she trades an@p (p, N) = 2 if she does
not trade. Therefore, she will trade wheneyer+ 2(1 — p) > 2 = p(v —2) > 0. This yields her best

6Any resemblance to the second car | drove in college is purely coincldenta
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response:

g1 =1 if p>0andv >2
BRp(p) = 4q1€1[0,1] if p=0o0rv=2
g1 =0 if p>0andv <2

The seller with a lemon will get/;,(p,t) = pv if she trades, and/»(p,n) = 0 if she does not trade.
Therefore, she will trade whenevep > 0. Sincev > 0, this yields her best response:

g =1 if p>0
B —
R =) o] it p=o0

Observe, in particular, that for any > 0 (that is, whenever the buyer is willing to trade with positive
probability), she always puts the lemon on the market. Turning now to the,hwgesee that his expected
payoff from trading is:

Up(T.q192) = B —v)rq1 + (1 —v)(1 —r)qa.

Since his expected payoff from not tradinglig (N, g1¢2) = 0, he will trade wheneve(3 — v)rq; +
(I =v)(1 —=r)g2 = 0. LettingR = r/(1 —r) > 0, this yieldsR(3 — v)q; > (v — 1)q2. Hence, the best
response is:

p=1 if R3—v)g1 > (v—1)g2
BRg(q192) = {p €[0,1] if RB—v)q1 = (v—1Dgqa
p=0 if RB—v)g1 < (v—1)g2

As before, we must find a profilép, g1, ¢2), along with some possible restrictions ensuch that the
buyer strategy is a best-response to the strategies of the two types of, sailkeach seller type’s strategy
is a best response to the buyer’s strategy. We shall look for equilibréxeninade occurs with positive
probability, that is wherep > 0.” This immediately means that the seller with the lemon always trades in
equilibrium, sog, = 1. Observe further that for the seller of the peach to mix in a trading equilibrium,
v = 2is necessary. This is a knife-edge condition onBhes Boolprice and the solution is not interesting
because it will not hold for any slightly different from 2. Therefore, we shall suppose that 2. This
immediately means that we only have two cases to consider, both in pure ssatbgieseller with the
peach either trades or does not.

Supposgy; = 0, so the seller with the peach never trades. Sipce 0, this implies thatv < 2.
Looking at the condition iBBRg (01), we see that the best responsgis- 0if v > landp = 1if v < 1.
Since we are looking for a trade equilibrium, we conclude that & 1, there exists an equilibrium in
which only the lemon is brought to the market; the seller with the peach staysouha buyer obtains
the lemon at the low price < 1. The PSNE i97, Nt).

Suppose now; = 1, so both peaches and lemons are traded. Since the seller of the peach gstwillin
trade, this means > 2. In other words, a necessary condition for the existence of this equitibsuhat
the Blue Bookprice of the car exceeds the seller’s valuation of the peach. (If it didh@otyould never
trade at that price.) Looking now BRg(11), we find thatp = 1 wheneverR(3 —v) > v — 1, which is
satisfied whenever:

v—1 X v—1 1

= = > 2N > > —,
3y " T« T 7

"There is an equilibrium wher8 buys with probability 0 and both types &f sell with probability 0, but it is not terribly
interesting because it relies on knife-edge indifference conditions.

R >
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where the last inequality follows from > 2. If this is satisfied, then the PSNE(%, T'¢). In other words,
this equilibrium exists only if the prior probability of the car being a peach icsetly high.

We conclude that if th8lue Bookprice is too low(v < 1), then in equilibrium only the lemon is traded.
If, on the other hand, the price is sufficiently high > 2), then in equilibrium both the lemon and the
peach are traded provided the buyer is reasonably confident thartieacpeactir > 1/). If the price
is intermediate] < v < 2, then no trade will occur in equilibriur.

The results are not very encouraging for the buyer: It is not postibidtain an equilibrium where
only peaches are traded and lemons are not. Whenever trade odgtgsbeth types of cars are sold, or
only the lemon is sold. Furthermore,rf< 1/, then only lemons are traded in equilibrium. Thus, with
asymmetric information markets can sometimes fail.

3.4 The Game of Chicken with Two Types

Consider the standard two-player game of Chicken, in which the driiatgtaneously choose whether to
continue C) or swerve §). If both swerve, both are chicken and get no respect but neitharisdd, so
their payoffs are 0 each. ifcontinues while-i swerves, thei neither is harmed butgains respect with
a payoff of R > 0, whereas-i is declared chicken with a payoffR. If both continue, they split respect
but get themselves into an accident, which ends with punishment by themp#nat imposes a personal
costk, so the individual payoffs to the teenagers & — k. Imagine now that the parents of each teen
can be either lenient or harsh, so that the costs they impose are eithér e\, or high,k = K, with
K > R. Itis common knowledge that the parents are either lenient or harsh witth apbability.

We can think of each player being of two typesge {lenient harsh}, depending on what parents they
have, so that the prior distribution of types is ju4tfor each pair, as shown in Fig. 11 (p. 18).

Player 2’s type
lenient  harsh
lenient| 1/4 1/4

Player 1's type

harsh| 1/4 1/g

Figure 11: Prior Distribution over the Types of Parents.

Each player knowing the type of their own parents tells them nothing abotypleof parents of the
other player. Thus, Pr_; = harshy; = harsh = Pr(z_; = harsh; = lenien) = 1/,. This makes it
easy to calculate the expected payoffs for each type of teen. We shiddisdior player 1 since player
2's payoffs are computed analogously. In each calculation, we writeply strategy as a paitay),
which represents what action she will take if she has lenient parenio( harsh onesa(y). If player 1
of typet; continues, his expected payoffs will be:

Ui(C,CCl|ty) = Rh—k
Ui(C.CS|t) = Ur(C,SCn) = (o) (R — k) + (V)R = 3R/ — kJ
U1(C,SS|1‘1) =R

8To see this, observe that < 2 impliesg; = 0 because the seller of the peach will not bring it to the market. But then
R(3—v)q1 = 0 < (v— 1)q; for any value ofg; > 0 because > 1. Therefore,p = 0, and the buyer is not willing to trade.
We can actually find equilibria witlh = 0 andg; > 0 andg, > 0 as well. To see this, note that if the buyer is sure not to trade,
both types of sellers can mix with < 2. Hence, any paitq:, ¢») that satisfieR(3 — v)q1 < (v — 1)g2 will actually work.
Obviously, it will have to be the case that < ¢ for this to work; that is, the seller of the peach is less likely to trade than the
seller of the lemon. None of these equilibria are particularly illuminating beybe fact that no trade occurs in any of them.
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Note that since player 1 swerves, no accident ever occurs, whichsntleainno parental punishment is
inflicted, and so the payoffs are the same irrespective of type. Thukayiépl swerves, his expected
payoffs will be:

Ui(S,CC) = —R
Ui(S,CS) = Ui(S,5C) = (12)(0) + (12)(=R) = —R)>
Ui (S,SS) = 0.

We can now use these payoffs to construct the strategic form, wheretedhat theex anteexpected
payoff for player 1 (that is, before he learns his type) is just the arpegayoff from each of his type-
contingent payoffs we just calculated above times their probability (whioh,should recall, ish). For
instance, the expected payoff from the stratégy (continue irrespective of type) againsC for player

2is:
R—-K
Ui (CC,CC) = (1)U (C,CC|lenienh + (1)U (C, CClharsh = —
whereas the payoff from the strate@y against the same strategy for player 2 is:

Ui(CS,CC) = (1)U (C, CCllenieny + (1)U (S, CC|harsh = —g.

The corresponding payoffs against #i§ strategy for player 2 are:

Ui (CC,CS) = (1)U (C,CS|lenieny + (1)U (C, CS|harsh = SR~

oo X

Ui(CS,CS) = (1)U (C,CS|lenieny + (1L)U; (S, CS|harsh =

The payoff matrix of the resulting Bayesian game is shown in Fig. 12 (p. 19).

cc cs sc SS

R—-K R-K 3R—K R 3R—K R K
cc| HF 5 T a R ) R.-R
R 3R-K R R R R K R R
€S| —%73 ERE 58 a4 2 "%
SC|_R_K3®K| R_KR |R_KR_K R _R
4 20 a4 8 4°8 8 4°8 4 2° 4

R R R R

SS ~R,R R R —R R .0

Figure 12: Game of Chicken with Incomplete Information.

Observe now thaf’'S strictly dominatesS .S, so we can eliminat8 S. With this strategy removed;S
becomes strictly dominant ovétC as well. We obtain the reduced form shown in Fig. 13 (p. 19).

ccC (N

R—K R—K | 3R—K _R

cc 2 02 4 4
R 3R-K R R
CS | —%-73 58

Figure 13: Game of Chicken with Incomplete Information, Reduced Form.

Suppose first that the harsh punishment is sufficiently nasty relativettatéon:2K > 5R. Then each
player has a strictly dominant strate@ys, so the game has a unique PSNES, CS). Teenagers with
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lenient parents continue but those with harsh parents swerve. Betogathe begins, we would expect
the probability of an accident to be

Pr(accident = Pr(Player 1 continugsx Pr(Player 2 continues
= [Pr(PIayer 1 continugs, = lenieny Pr(¢; = lenien)
+ Pr(Player 1 continugs; = harsh Pr(¢z; = harsh]
X [Pr(PIayer 2 continuds, = lenien) Pr(¢, = lenien)
+ Pr(Player 2 continués, = harsh Pr(¢, = harsh]
(DR + @) ] < [0 + )]
= 1.

Analogous calculations yield thex anteprobability distribution over outcomes in this PSNE, as shown in
Fig. 14 (p. 20).

Player 2
continues  swerves
continues 1/4 1/4
Player 1
swerves 1/4 1/4

Figure 14: Probability Distribution over Outcomes in PSNE.

Observe that unlike the original Chicken game with complete information, theER#&Xe generates
positive probabilities oveall outcomes (much like the MSNE in the original). In particular, there is
a positive probability that disaster will occur even though each type issiig@ pure strategy. The
uncertainty comes from not knowing the other player’s type, which in tmcoerages the teens with
lenient parents to run a risk of disaster in return for the possibility of atagipnal gain. On the other
hand, the teens with harsh parents choose to avoid that risk and sweexeh for them there is a chance
that they will not suffer reputational losses.

The point that pure-strategy Nash equilibria in a game of incomplete informggioerate unpredictabil-
ity about behaviors, which in turn generates a probability distribution cuéows outcomes that we would
normally only expect in mixed-strategy equilibria in games of complete informatiohtriéigd one to won-
der: is there some relationship between PSNE in incomplete information gam&4Sitid in “similar”
complete information games? The answer, turns out, is positive, as weeshall the next section.

Suppose now the harsh punishment is moderately nasty relative to repufation 2K > 3R. Then,
we obtain the following best responses:

CS ifs;=CC

BR = .
CC ifs;=CS

That is, if the opponent is certain to continu€(), then the punishment is sufficiently harsh to deter

the teen who expects to be punished with it. However, if the risk is smaller fethere’s a chance the

opponent will swerveS), then this punishment is no longer sufficient as a deterrent, and evégethe

with harsh parents will choose to continue.
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3.5 Study Groups

Two players have to hand in a joint assignment, and simultaneously chooseteitliork hard W) or

to slack off (§). Working involves incurring a cogt € (0, 1). The assignment is completed successfully
if at least one of the students works and fails otherwise. Students hizatepinformation about their
own valuation of a successfully completed assignmelhtwhere eachy; is independently and uniformly
distributed over the intervgD, 1]. These distributions are common knowledge. Each values a failed
assignment at 0.

This is a game with a continuum of types for each player. Writing the extemsive will not be
particularly helpful, and writing the strategic form is impossible becausemaghr has an infinite number
of type-contingent strategies despite there being only two possible actiRasall that a strategy maps
the type to the action spacg(v;) — {W, S}.)

We do not knowa priori how types map into actions. Let us first consider type-contingent strategie
that is, strategies that prescribe different actions for differentetatod types. Any such strategy for player
—i, let’s call it o—;, will generate a probability that this player will work, let's call thigo_;) € (0, 1),
where the open interval follows from the fact that some types work b@rsttio not. This means that
from playeri’s perspective, playeri will work with probability w(o—;), which allows us to calculate that
player's expected payoffs:

Ui(W,o_j|vi) = vl-2 —c and U;i(S,o0_vi) = a)(U_i)vl-z.

If in equilibrium some type is willing to work, then it must be tHat(W, o_; |v;) > U; (S, o—;|v;i), or

- C
V; P —
TV 1—ow(0m)

Consider now some typ& > v;, and note that the above inequality must be strictly satisfied for that
type (the left-hand side increases while the right-hand side remains c)n3tais means that this higher
valuation type must be willing to work in that equilibrium as well. In other wordsriy equilibrium with
type-contingent strategies, if some type of playevorks, then all higher-valuation types work as well.
This further implies that if some type shirks in equilibrium, then all lower-valuatyges must shirk as
well. We can then infer, that in any such equilibrium there must be a typehat is indifferent between
working and shirking. Ib*; is player—i’s equilibrium strategy, then this type is defined as:

* c
i = ey (1)

This result greatly simplifies our task because it meansathatjuilibria in type-contingent strategies must
involve pure strategies of the form: “al} < v shirk, and allv; > v work.” These strategies make it
easy to define the expectations of the players because the probabilityetiothén player works is just the
probability that his valuation exceeds the threshold value:

w(0*;) =Prv—; > v*) =1—-Prlv; <v*)=1-v",

where we used the distributional assumption that ~ UJ0, 1]. Since (1) defines the threshold type for
playeri, we can substitute for the value fc*;) = 1 — v*; to obtain the system of equations:




which tells us that the threshold valuations must be the saifie= v*, = v*. This should not be
surprising since we assumed that the valuation range, the cost, and dits jpag the same. Substituting
this into any of the two equations in the system yields:

v* = Ye.
We conclude that the equilibrium in type-contingent strategies is unique arsiritegy for each playeér
is:
S if v; < E/E

*
i () = W otherwise
What about non-contingent strategies where all types of a playesetibe same action? Suppose player
works for sure in equilibrium. Playeri’s best response is to shirk, but then low-valuation types of player
i do not want to work becausx;?r —c¢ < Oforallv; < 4/c. Therefore, there can be no such equilibrium. If,
on the other hand, playérwere sure to shirk, then playeri’s best response is to workif_; > /c and
shirk otherwise. But this means that her strategy is type-contingent, anestv@erived the equilibrium
for this case. We conclude that the equilibrium we found is unique.

How does this compare to a complete information game with common knowledge vaf@tiov,),
whose payoff is shown in Fig. 15 (p. 22)?

Player 2
W S
2 2 2 2
PIayeer V] —C, V5 —¢C vy —C, 05
v%, v% —c 0,0

Figure 15: Study Groups with Complete Information.

If v; < /c, then the unique equilibrium i&S, S), and neither player works, so the assignment never
gets done. The costs of effort are just too high relative to how much gglaygee about the assignment.
Since./c < /¢, if these two types play the incomplete information game, neither will work eitiner, a
the assignment will not be done. The (lack of) information changes nothing

If v; < /c butv_; > 4/c, then there is an asymmetric situation, in which playeloes not value
the assignment to put in any effort but player does, so the unique equilibrium involves = S and
s—; = W. What happens if two of these types play the incomplete information game?lyClgawill
shirk there as well. But what about ;? There are two cases:if ; > 3/c, then he will contribute, so the
outcome would be the same as with complete information. However, ife (i/c, ¥/c], then this type
would not contribute under incomplete information even though he would have donétls@amplete
information. The reason is that with complete information, this type knows f@r that shirking means
that the assignment will not be done, and he prefers to get it done. Witmjslete information about
the other player, this type thinks that there is a positive probability that the pldnger will complete the
assignment, and so he attempts to free ride because his valuation is nagstlffitigh to induce him to
ensure the completion of the assignment. In other words, in this situationicatod will fail because
of incomplete information, and the assignment will not get done. In retobspe will deeply regret not
putting in the effort.

If both players value the assignment highly, > ./c, then there are multiple equilibria. As before,
there are the two asymmetric PSNE, S) and(S, W). No player who expects the other to do the work
has any incentive to work irrespective of their valuation of the assignmsnisual in these mixed-motive
games (players want to coordinate on the assignment getting done buedisdgut who is going to do
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the work), there is also a MSNE. Since playas willing to mix, it follows thatU; (W,o—;) = U; (S, 0—;,

2 2 .
orv; —c = vyo—;(W), so:

O-jl(W) - vi —¢

Vi
In this equilibrium, there is a positive probability that the assignment will notdmedecause of coordi-
nation failure. This probability is

2
(1 —oF (W) —oF(W)) = v‘;—vz € (0.1).

If these types were to play under incomplete information, then there amnabkpussibilities depending on
whether one or both of them meet the work threshold. If neither dges, ¥/c, then they will shirk and the
assignment will fail with certainty, which is clearly worse than the MSNE.ifilee other hand, at least one
of them has a valuation that exceeds the threshold, then the assignmerd eoliripleted with certainty.
In other words, coordinating under incomplete information might help plagsil coordination failure
because it reduces the incentive to free-ride in situations where eitlyer plauld be willing to complete
the task.

4 Purification of Mixed Strategies: The Battle of the Sexes

Consider the following modification of the Battle of the Sexes: player 1 is eredoout player 2’s payoff
if they coordinate on going to the ballet, and player 2 is unsure about plésy/payoff if they coordinate
on going to the fight. That is, the player 1's payoff in {t#& F') outcome i + 6;, wheref, is privately
known to him; and player 2's payoff in th&, B) outcome i + 6,, wheref, is privately known to her.
Assume that both; and6, are independent draws from a uniform distribut[onx].° Formally,

e Players:N = {1,2};

Actions: A1 = A, = {F, B};

Types:01 = 0, = [0, x];

Beliefs: p1(62) = p2(81) = 1/x (where we used the fact that the uniform probability density
function is f(x) = 1/x when specified for the intervid, x]);

Payoffs:u, u, as described in Fig. 16 (p. 23).

Player 2
F B

2+61,1 0,0

F
Player 1

0,0 1,2+ 6,

Figure 16: Battle of the Sexes with Two-Sided Incomplete Information.

Each player has a continuum of typ€; (s infinite). When considering type-contingent pure strategies,
we shall look for a Bayesian equilibrium in which player 1 goes to the fight #xceeds some threshold

9The choice of the distribution is not important but we do have in mind thaetpesately known values only slightly perturb
the payoffs.
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type,x1, and goes to the ballet otherwise, and player 2 goes to the balle¢xceeds some threshold type,
X2, and goes to the fight otherwise. These threshold (or cut-point) straitgequite simple: given an
interval of types, there exists a special type, the threshold, such thgbedl smaller than it do one thing,
and all types greater than it do another. With payoffs that are strictly moiedtotype (either always
increasing or decreasing), this means that the threshold type must bernediifbetween the two actions.

Why are we looking for an equilibrium in such strategies? Because weroaa that any equilibrium
must, in fact, involve cut-point strategies. This follows from the fact that éduilibrium some typé;
choosesF, then it must be the case that éil > f#1 must also be choosing. We can prove this by
contradiction. Take some Bayesian equilibrium and sémehose optimal strategy i&. Now take some
él > 6; and suppose that his optimal strategyBisWe shall see that this leads to a contradiction. Since
61 choosegF in equilibrium,

Ui (F.o3|01) = 2+ 61)03 (F) = ()(1 — 03 (F)) = U1 (B, 05 01).
Furthermore, sincé1 choosesB in equilibrium, it follows that:
Ur(B.o3|01) = ()1 — 03 (F)) = 2+ 61)03 (F) = Uy (F. 05 [01).

Putting these two inequalities together yield@®:+ 6,)o5 (F) > (2 + él)a;‘(F). If 05 (F) = 0, player
1's best response B regardless of type, which contradicts the supposition@hahooses . Therefore,
it must be the case that/ (F) > 0. We can therefore simplify the above inequality to obtzis 6; >
2 + 6, = 6; > 6;. However, this contradict, > 6. We conclude that if some type of player 1 chooses
F in equilibrium, then so must all higher types. A symmetric argument establishiei$ slhane type of
player 2 choose® in equilibrium, then so must all higher types. In other words, players mussing
cut-point strategies in any equilibrium.

Let's now go back to solving the game. We shall denote the (yet unknowegttbld type for player
by x;, so the equilibrium probability of choosing the favorite entertainment[& Br x;]. For simplicity
(and with slight abuse of notation), lef (1) denote the probability that player 1 goes to the fight, that is:

O—1(91) = Pr[91 > XI] - l — Pr[el E xl] = 1 — %
Similarly, the probability that player 2 goes to the ballet is

02(62) = Pl{fs > x2] = 1 — P{fs < x2] = 1 — “2.
X

Suppose the players play the strategies just specified. We now want kq fingthat make these strategies
a Bayesian equilibrium. Given player 2’s strategy, player 1's expedcigdffs from going to the fight and
going to the ballet are:

Efu1(F|01,.62)] = 2+ 01)(1 —02(62)) + (0)02(62) = );—2(2 + 61)
E[u1(B|01,02)] = (0)(1 — 02(62)) + (1)02(62) = 1 — %

Going to the fight is optimal if, and only if, the expected utility of doing so exsedhd expected utility of
going to the ballet:

Eu1(F|01,02)] > E[u1(Bl61, 62)]
2o+ =1-22
x x

lei—&
X2
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Clearly, any type for whom this inequality is strict is going to the fight. This mdaaisthesmallesttype
that could go to the fight is the one, for whom it holds with equality. We shiltteatype that's indifferent
between going to either entertainment, theesholdtype: x; = x/x, — 3. Player 2’s expected payoffs
from going to the ballet and going to the fight given player 1's strategy are

E[uz2(B|61,62)] = (0)o1(61) + (2 + 62)(1 —01(61)) = );—1(2 + 62)
Eu2(F|61,602)] = (Do1(61) + (0)(1 —o01(61)) = 1 — %
and so going to the ballet is optimal if and only if:

E[u2(B|01,02)] = E[uz(F161,62)]

Lo+ =1-2L
X X
9221—3.

X1

Let xo = x/x1 — 3 denote the threshold type for player 2. We now have the two threshold, typege
solve the following system of equations:

X1 =x/xp—3
X2 =x/x1 —3.

The solution isx; = x» andx% + 3x, — x = 0. We now solve the quadratic, whose discriminant is
D = 9 4 4x, for x,. The solution is:

-3+ V94 4x
X]=Xp = —M.
2
The pair of strategies:
F iféo F if6, <
sy =1 0 =1 2=
B |f91§x1 B |f92>)€2
where
-3+ V94 4x
X1 = Xp = f

is thus a Bayesian equilibrium of this garfeln this equilibrium, the probability that player 1 goes to the
fight equals the probability that player 2 goes to the ballet, and they are:
PR R D Ak 2)
X X 2x
It is interesting to see what happens as uncertainty disappears aes to 0). Taking the limit of the
expression in Equation 2 requires an application of the L'Hépital rule:

d
i |:1_—3+«/x9+4xj| - [dx( 3+\/9+4x)}

2 4 (2x)

19There are two other pure-strategy equilibria, in which both players ehthessame entertainment irrespective of their types.
These replicate the two PSNE from the complete information game. Note asththstrategies do not specify what to do
for 6; = x; because the probability of this occurring is 0 (the probability of any particulanber drawn from a continuous
distribution is zero). It is customary that one of the inequalities, it doesnadtier which, is weak in order to handle the case.

209 +4x)712 2
- g 20402
x—0 2 3

x—0 x—0
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In other words, as uncertainty disappears, the probabilities of play&ying F and player 2 playing

B both converge t@/3. But these arexactly the probabilities of the mixed strategy Nash equilibrium
of the complete information caseTlhat is, we have just shown that as incomplete information disap-
pears, the players’ behavior in the pure-strategy Bayesian equilibfitine mcomplete-information game
approaches their behavior in the mixed-strategy Nash equilibrium in the alrigiime of complete infor-
mation.

Harsanyi (1973) suggested that playes mixed strategy represents playés uncertainty abouj’s
choice of a pure strategy, and that playé& choice in turn depends on a small amount of private informa-
tion. As we have just shown (and as can be proven for the genegg| eawixed-strategy Nash equilibrium
can almost always be interpreted as a pure-strategy Bayesian equilibrauofosely related game with a
little bit of incomplete information. The crucial feature of a mixed-strategy Naghilibrium is not that
player j chooses a strategy randomly, but rather that playemuncertain about playei’s choice. This
uncertainty can arise either because of randomization or (more plauséuguge of a little incomplete
information, as in the example above.

This is calledpurification of mixed strategies That is, this example show Harsanyi’s result that it
is possible to “purify” the mixed-strategy equilibrium of almost any completermédion game (except
some pathological cases) by showing that it is the limit of a sequence ebpategy equilibria in a game
with slightly perturbed payoffs. This a defense of mixed-strategies thes dot require players to ran-
domize deliberately, and in particular it does not require them to randomizéhgitliequired probabilities.
Recall that in MSNE the player is indifferent among every mixture with the s the MSNE strategy.
There is no compelling reason why he should choose the randomizatianr&dtiby the equilibrium.
Harsanyi's defense of mixed strategies gets around this problem vetly because players here do not
randomize, it is just that their behavior can appear that way to the othemnastyically informed players.
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