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The games we have discussed up to this point assumecommon knowledgeabout the structure of the
game, the possible moves (including the probability distributions of chance events), the players, and their
preferences. In fact, we assumed that the common knowledge about these things is itself common knowl-
edge. These games ofcomplete informationcan be viewed as rough approximations for certain situations
where perhaps the level of uncertainty is low and might be considered irrelevant. Generally, however,
players may not possess full information about their opponents, the situation, or how actions map into out-
comes. They might have some idea, abelief, about the relevant factors but not know for sure. We have seen
a version of this with games of imperfect information where players could notobserve theactualactions
of others but did know what thepossiblemoves could be, and we then required that players form beliefs
about the actions of their opponent that areconsistentwith the best-response definition of rationality we
have been using. In these situations, the players are best-responding totheir own beliefs about what others
might be doing, and these beliefs are derived from the assumption that the others are best-responding as
well. The definition of Nash equilibrium is, in effect, a requirement about theconsistency of beliefs about
all the players’ strategies. The questions now is: Could this idea be somehowextended to deal with situa-
tions where players might not know for sure other things about each other, such as preferences, available
actions, or the structure of the game itself?

It turns out that the answer is positive: in the 1960s John C. Harsanyi realized that all kinds of incomplete
information could be represented with the abstract idea ofplayer types: that is, if Player 1 was unsure
about Player 2’s preferences, he could imagine that he might be facing one from several potential “types”
of Player 2, each of whom have her own specific preferences. Uncertainty about which of these “types”
is actually playing the game is then represented by a probability distribution overthe types; that is, Player
1’s belief about Player 2’s preferences boils down to a probability with which he might be interacting
with a particular type. This transforms incomplete information into a move by chance at the beginning of
the game—which determines which actual game is being played—and so the interaction becomes one of
imperfect information, which you already know how to solve. The so-calledHarsanyi transformationcan
be applied to any sort of uncertainty: if a player does not know what moves are available to him (or his
opponent), then “chance” would be selecting among games with different structures, and so on.

1 A Simple Entry Game

To make matters a bit more specific, let us look at an example. There are two firms in some industry:
an incumbent (player 1) and a potential entrant (player 2). Player 1 decides whether to build a plant, and
simultaneously player 2 decides whether to enter. Suppose that player 2 is uncertain whether player 1’s
building cost is3/2 or 0, while player 1 knows his own cost. The payoffs are shown in Fig. 1 (p. 2).

Enter Don’t

Build 0; �1 2; 0

Don’t 2; 1 3; 0

high-cost

Enter Don’t

Build 3=2; �1 7=2; 0

Don’t 2; 1 3; 0

low-cost

Figure 1: An Entry Game with Incomplete Information.

Player 2’s payoff depends on whether player 1 builds or not (but is not directly influenced by player
1’s cost). Entering for player 2 is profitable only if player 1 does not build.Note that “don’t build” is a
dominant strategy for player 1 when his cost is high. However, player 1’s optimal strategy when his cost
is low depends on his prediction about whether player 2 will enter. Denote the probability that player 2
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enters withy. Building is better than not building if

.3=2/y C .7=2/.1 � y/ � 2y C 3.1 � y/

y � 1=2:

In other words, a low-cost player 1 will prefer to build if the probability thatplayer 2 enters is less than
1=2. Thus, player 1 has to predict player 2’s action in order to choose his own action, while player 2, in
turn, has to take into account the fact that player 1 will be conditioning his action on these expectations.

For a long time, game theory was stuck because people could not figure outa way to solve such games.
However, in a couple of papers in 1967-68, John C. Harsanyi proposed a method that allowed one to
transform the game of incomplete information into a game of imperfect information,which could then
be analyzed with standard techniques. Briefly, theHarsanyi transformation involves introducing a prior
move by Nature that determines player 1’s “type” (in our example, his cost),transforming player 2’s
incomplete information about player 1’s cost into imperfect information aboutthe move by Nature.

Letting p denote the prior probability of player 1’s cost being high, Fig. 2 (p. 3) depicts the Harsanyi
transformation of the original game into one of imperfect information.

Low-Cost
Œ1 � p�

High-Cost
Œp�

Nature

Don’tBuild
1

D

2; 0

E

0; �1

D

3; 0

E

2; 1

don’tbuild
1

D

7=2; 0

E

3=2; �1

D

3; 0

E

2; 1

2

Figure 2: The Harsanyi-Transformed Game from Fig. 1 (p. 2).

Nature (or Chance) moves first and “chooses” player 1’s type: with probability p the type is “high-
cost” and with probability1 � p the type is “low-cost.” It is standard to assume that both players have
the same prior beliefs about the probability distribution on nature’s moves. Player 1 knows his own type
(i.e. he learns what the move by Nature is) but player 2 does not. Observenow that after player 1 learns
his type, he has private information: all player 2 knows is that probability ofhim being of one type or
another. It is quite important to note that here player 2’sbeliefs are common knowledge. That is, player
1 knows what she believes his type to be, and she knows that he knows, and so on. This is important
because player 1 will be optimizing given what he thinks player 2 will do, andher behavior depends on
these beliefs. We can now apply the Nash equilibrium solution concept to this new game. Harsanyi’s
Bayesian Nash Equilibrium (or simply Bayesian Equilibrium) is precisely the Nash equilibrium of this
imperfect-information representation of the game.

Before defining all these things formally, let’s solve the game in Fig. 2 (p. 3).Player 2 has one (big)
information set, so her strategy will only have one component: what to do at this information set. Note
now that player 1 has two information sets, so his strategy must specify whatto do if his type is high-cost
and what to do if his type is low-cost. One might wonder why player 1’s strategy has to specify what to do
in both cases, after all, once player 1 learns his type, he does not care what he would have done if he is of
another type.

3



The reason the strategy has to specify actions for both types is roughly analogous for the reason the
strategy has to specify a complete plan for action in extensive-form games with complete information:
player 1’s optimal action depends on what player 2 will do, which in turn depends on what player 1 would
have done at information sets even if these are never reached in equilibrium. Here, player 1 knows his cost
which is, say, low. So why should he bother formulating a strategy for the (non-existent) case where his
cost is high? The answer is that to decide what is optimal for him, he has to predict what player 2 will do.
However, player 2 does not know his cost, so she will be optimizing on the basis of her expectations about
what a high-cost player 1 would optimally do and what a low-cost player 1 would optimally do. In other
words, the strategy of the high-cost player 1 really represents player 2’s expectations.

The Bayesian Nash equilibrium will be atriple of strategies: one for player 1 of the high-cost type,
another for player 1 of the low-cost type, and one for player 2. In equilibrium, no deviation should be
profitable.

1.1 Solution: The Strategic Form

Let’s write down the strategic form representation of the game in Fig. 2 (p. 3). Player 1’s pure strategies
areS1 D fBb; Bd; Db; Ddg, where the first component of each pair tells his what to do if he is the
high-cost type, and the second component if he is the low-cost type. Player 2 has only two pure strategies,
S2 D fE; Dg. The resulting payoff matrix is shown in Fig. 3 (p. 4).

Player 1

Player 2
E D

Bb 3=2 � 3p=2; �1 7=2 � 3p=2; 0

Bd 2 � 2p; 1 � 2p 3 � p; 0

Db 3=2 C p=2; 2p � 1 7=2 � p=2; 0

Dd 2; 1 3; 0

Figure 3: The Strategic Form of the Game in Fig. 2 (p. 3).

Db strictly dominatesBb andDd strictly dominatesBd . This should not be surprising: since the
high-cost type has a strictly dominant strategy not to build, no Nash equilibrium would permit him to
build, which is why all strategies that involve him doing so just got eliminated. Removing the two strictly
dominated strategies reduces the game to the one shown in Fig. 4 (p. 4).

Player 1

Player 2
E D

Db 3=2 C p=2; 2p � 1 7=2 � p=2; 0

Dd 2; 1 3; 0

Figure 4: The Reduced Strategic Form of the Game in Fig. 2 (p. 3).

If player 2 choosesE, then player 1’s unique best response is to chooseDd regardless of the value of
p < 1. HencehDd; Ei is a Nash equilibrium for all values ofp 2 .0; 1/.

Note now thatE strictly dominatesD whenever2p � 1 > 0 ) p > 1=2, and so player 2 will never mix
in equilibrium in this case. Let’s then consider the cases whenp � 1=2. We now also havehDb; Di as a
Nash equilibrium.
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Suppose now that player 2 mixes in equilibrium. Since she is willing to randomize,

U2.E/ D U2.D/

�1.Db/.2p � 1/ C .1 � �1.Db//.1/ D 0

�1.Db/ D 1

2.1 � p/
:

Since player 1 must be willing to randomize as well, it follows that

U1.Db/ D U1.Dd/

�2.E/.3=2 C p=2/ C .1 � �2.E//.7=2 � p=2/ D 2�2.E/ C 3.1 � �2.E//

�2.E/ D 1=2:

Hence, we have a mixed-strategy Nash equilibrium with�1.Db/ D 1
2.1�p/

, and�2.E/ D 1=2 whenever
p � 1=2. The upper bound onp follows from the requirement that�1.Db/ � 1. It is not surprising in
light of the fact that most well-behaved games either have an odd number ofNash equilibria or infinitely
many. Since this game only has two PSNE whenp � 1=2, we should expect the MSNE to exist only in
these cases as well.1

Summarizing the results, we have the following Nash equilibria:

� Neither the high nor low cost types build, and player 2 enters;

� If p � 1=2, there are two types of equilibria:

– the high-cost type does not build, but the low-cost type does, and player 2 does not enter;

– the high-cost type does not build, but the low-cost type builds with probability 1=Œ2.1 � p/�,
and player 2 enters with probability1=2.

Intuitively, the results make sense. The high-cost type never builds, so deterring player 2’s entry can
only be done by the low-cost type’s threat to build. If player 2 is expectedto enter for sure, then even
the low-cost type would prefer not to build, which in turn rationalizes her decision to enter with certainty.
Deterrence fails with certainty here but at least no plant is being built (it would have been wasteful to do
so given her entry). This result is independent of her prior beliefs.

If, on the other hand, her prior belief is pessimistic enough (she believes that the likelihood of the high-
cost type is sufficiently low, orp � 1=2), then deterrence becomes possible, and there are two equilibria. In
one, the low-cost type builds for sure, and given her pessimistic priors,player 2 is unwilling to run the risk
of entry, so she stays out for sure as well. In the other, the low-cost type builds with positive probability,
which means that player 2 can no longer be deterred with certainty: the chances of not facing a plant are
high enough to make her willing to mix as well, and the uncertainty about her action, in turn, rationalized
the mixed strategy for the low-cost type of player 1. Deterrence can fail, and, moreover, it is possible that
player 2 ends up entering a market where a plant has been built, giving both players the worst possible
payoffs with positive probability. Thus, unlike the PSNE with deterrence failure, the MSNE does involve
building a plant thatex postturns out to have been a waste.

1There is a continuum of MSNE ifp D 1=2 but this is a knife-edge condition so we shall ignore it. A “knife-edge condition”
refers to a requirement that an exogenous variable takes on specific values. Any solution that depends on such a requirement
is extremely unstable since even the tiniest change in the value of that variable will wipe it out. Moreover, if we think of these
variables as being drawn from continuous distributions, then the probabilitythat they take on any specific value is zero.
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1.2 Solution: Best Responses

Noting that the high-cost player 1 never builds, letx denote the probability that the low-cost player 1
builds. As before, lety denote player 2’s probability of entry, and observe that the low-cost player 1
strictly prefers building to not building when the expected utility of building exceeds the expected utility
of not building:

U1.BjL/ � U1.DjL/

3y=2 C 7.1�y/=2 � 2y C 3.1 � y/

y � 1=2

Player 2 prefers to enter when the expected utility of doing so exceeds the expected utility of not entering:

U2.E/ � U2.D/

pU2.EjH/ C .1 � p/U2.EjL/ � pU2.DjH/ C .1 � p/U2.DjL/

p.1/ C .1 � p/.�x C 1 � x/ � 0

1 � 2x C 2px � 0

x � 1

2.1 � p/
� x

We can write the best responses as follows:

BR1.yjL/ D

8

ˆ

<

ˆ

:

1 if y < 1=2

Œ0; 1� if y D 1=2

0 if y > 1=2

BR2.x/ D

8

ˆ

<

ˆ

:

1 if x < x

Œ0; 1� if x D x

0 if x > x

where x D 1

2.1 � p/
:

Given these best-responses, the search for a Nash equilibrium boils down to finding a pair.x; y/, such
thatx is optimal for player 1 with low cost against player 2 andy is optimal for player 2 against player 1
given beliefsp and player 1’s strategy (x for the low cost and “don’t build” for the high cost). (We are,
technically speaking, looking for a triple because the strategy of the high-cost type must also be included.
However, since it is strictly dominant for that type to not build, we do not have to keep writing it down.)

Suppose first thaty > 1=2 in some equilibrium, in which casex D BR1.y/ D 0 < x. But then
y D BR2.x/ D 1, and so we have our first PSNE:h0; 1i. This is the equilibrium, in which player 1 does
not build irrespective of his type, and player 2 enters with certainty.

Suppose next thaty < 1=2 in some equilibrium, in which casex D BR1.y/ D 1. If 1 < x, then
y D BR2.1/ D 1 contradicts the supposition, so there can be no equilibrium here. So it must be that
1 � x, in which casey D BR2.x/ D 0, and so we have our second PSNE:h1; 0i. This only exists if
1 � x, or p � 1=2. This is the equilibrium, in which player 1 builds with certainty if he is the low-cost
type, and player 2 is deterred from entering.

Finally, suppose thaty D 1
2

in some equilibrium, in which casex D BR1.y/ 2 Œ0; 1�, so the low-
cost type can mix. Since player 2 is willing to randomize, it must be thatx D x, which is only a valid
probability if p � 1=2. This recovers the MSNE, in which the low-cost type builds with probabilityx, and
player 2 enters with probability1=2.

This yields the full set of equilibria.
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1.3 Interim vs. Ex Ante Predictions

Suppose in the two-firm example player 2 also had private information and could be of two types, “ag-
gressive” and “accommodating.” If she must predict player 1’s type-contingent strategies, she must be
concerned with how an aggressive player 2 might think player 1 would playfor each of the possible types
for player 1 and also how an accommodating player 2 might think player 1 wouldplay for each of his
possible types. (Of course, player 1 must also estimate both the aggressive and accommodating type’s
beliefs about himself in order to predict the distribution of strategies he should expect to face.)

This brings up the following important question: How should the different types of player 2 be viewed?
On one hand, they can be viewed as a way of describing different information sets of asingleplayer 2
who makes a type-contingent decision at theex antestage. This is natural in Harsanyi’s formulation,
which implies that the move by Nature reveals some information known only to player 2 which affects her
payoffs. Player 2 makes a type-contingent plan expecting to carry out one of the strategies after learning
her type. On the other hand, we can view the two types as two different “agents,” one of whom is selected
by Nature to “appear” when the game is played.

In the first case, the singleex anteplayer 2 predicts her opponent’s play at theex antestage, so all types
of player 2 would make the same prediction about the play of player 1. Underthe second interpretation,
the different “agents” would each make her prediction at theinterimstage after learning her type, and thus
different “agents” can make different predictions.

It is worth emphasizing that in our setup, players plan their actionsbeforethey receive their signals, and
so we treat player 2 as a singleex anteplayer who makes type-contingent plans. Both the aggressive and
accommodating types will form the same beliefs about player 1. (For more on the different interpretations,
see Fudenberg & Tirole, section 6.6.1.)

2 Bayesian Nash Equilibrium

A static game of imperfect information is called aBayesian game, and it consists of the following ele-
ments:

� a set of players,N D f1; : : : ; ng, and, for each playeri 2 N ,

� a set of actions,Ai , with the usualA D �i2N Ai ,

� a set of types,‚i , with the usual‚ D �i2N ‚i ,

� a probability function specifyingi ’s belief about the type of other players given his own type,pi W
‚i ! 4.‚�i /,

� a payoff function,ui W A � ‚ ! R.

Let’s explore these definitions. We want to represent the idea that each player knows his own payoff
function but may be uncertain about the other players’ payoff functions. Let �i 2 ‚i be some type of
playeri (and so‚i is the set of all playeri types). Each type corresponds to a different payoff function
that playeri might have.

We specify the pure-strategy spaceAi (with elementsai and mixed strategies̨i 2 Ai ) and the payoff
functionui .a1; : : : ; anj�1; : : : ; �n/. Since each player’s choice of strategy can depend on his type, we let
si .�i / denote the pure strategy playeri chooses when his type is�i (�i .�i / is the mixed strategy). Note
that in a Bayesian game, pure strategy spaces are constructed from the type and action spaces: Playeri ’s
set of possible (pure) strategiesSi is the set of all possible functions with domain‚i and rangeAi . That
is, Si is a collection of functionssi W ‚i ! Ai .
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If player i hask possible payoff functions, then the type space hask elements, #.‚i / D k, and we
say that playeri hask types. Given this terminology, saying that playeri knows his own payoff function
is equivalent to saying that he knows his type. Similarly, saying that playeri may be uncertain about
other players’ payoff functions is equivalent to saying that he may be uncertain about their types, denoted
by ��i . We use‚�i to denote the set of all possible types of the other players and use the probability
distributionpi .��i j�i / to denote playeri ’s belief about the other players’ types��i , given his knowledge
of his own type,�i .2 For simplicity, we shall assume that‚i has a finite number of elements.

If player i knew the strategies of the other players as a function of their type, that is, he knewf�j .�/gj ¤i ,
playeri could use his beliefspi .��i j�i / to compute the expected utility to each choice and thus find his
optimal response�i .�i /.3

Following Harsanyi, we shall assume that the timing of the static Bayesian game is as follows: (1)
Nature draws a type vector� D .�1; : : : ; �n/, where�i is drawn from the set of possible types‚i using
some objective distributionp that is common knowledge; (2) Nature reveals�i to playeri but not to any
other player; (3) the players simultaneously choose actions, playeri chooses from the feasible setAi ; and
then (4) payoffsui .a1; : : : ; anj�/ are received.

Since we assumed in step (1) above that it is common knowledge that Nature draws the vector� from
the prior distributionp.�/, player i can use Bayes’ Rule to compute his posterior beliefpi .��i j�i / as
follows:

pi .��i j�i / D p.��i ; �i /

p.�i /
D p.��i ; �i /

P

��i 2‚�i
p.��i ; �i /

:

Furthermore, the other players can compute the various beliefs that playeri might hold depending oni ’s
type. We shall frequently assume that the players’ types are independent, in which casepi .��i / does not
depend on�i although it is still derived from the prior distributionp.�/.

Now that we have the formal description of a static Bayesian game, we want todefine the equilib-
rium concept for it. The notation is somewhat cumbersome but the intuition is not:each player’s (type-
contingent) strategy must be the best response to the other players’ strategies. That is, aBayesian Nash
equilibrium is just a Nash equilibrium in a Bayesian game.

Given a strategy profiles.�/ and a strategys0
i .�/ 2 Si (recall that this is a type-contingent strategy, with

s0
i 2 Si , whereSi is the collection of functionssi W ‚i ! Ai ), let .s0

i .�/; s�i .�// denote the profile where
playeri playss0

i .�/ and the other players follows�i .�/, and let
�

s0
i .�i /; s�i .��i /

�

D
�

s1.�1/; : : : ; si�1.�i�1/; s0
i .�i /; siC1.�iC1/; : : : ; sN .�N /

�

denote the value of this profile at� D .�i ; ��i /.

DEFINITION 1. Let G be a Bayesian game with a finite number of types‚i for each playeri , a prior
distributionp, and strategy spacesSi . The profiles.�/ is a (pure-strategy)Bayesian equilibrium of G if,
for each playeri and every�i 2 ‚i ,

si .�i / 2 arg max
s0

i
2Si

X

��i

ui

�

s0
i ; s�i .��i /j�i ; ��i

�

p.��i j�i /;

that is, no player wants to change his strategy, even if the change involvesonly one action by one type.4

2In practice, the players’ types are usually assumed to be independent, inwhich casepi .��i j�i / does not depend on�i , and
so we can write the beliefs simply aspi .��i /.

3This is where the assumption that‚i is finite is important. If there is a continuum of types, we may run into measure-theoretic
problems.

4The general definition is a bit more complicated but we here have used theassumption that each type has a positive probability,
and so instead of maximizing theex anteexpected utility over all types, playeri maximizes his expected utility conditional on
his type�i for each�i .
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Each type-contingent strategy is a best response to the type-contingentstrategies of the other players.
Playeri calculates the expected utility of playing every possible type-contingent strategysi .�i / given his
type�i . To do this, he sums over all possible combinations of types for his opponents, ��i , and for each
combination, he calculates the expected utility of playing against this particular set of opponents: The
utility, ui .s

0
i ; s�i .��i /j�i ; ��i /, is multiplied by the probability that this set of opponents��i is selected

by Nature:p.��i j�i /. This yields the optimal behavior of playeri when of type�i . We then repeat the
process for all possible�i 2 ‚i and all players.

It is easy to extend this definition to infinite type spaces. For example, suppose player 1 was uncertain
about player 2’s payoffs, but believed they fall within some range. We would then define player 2’s types
as that range,‚2 D Œ�2; �2�, with player 1’s beliefs being represented by a well-defined density function,
f2.�/, over that interval. We shall see an example of this shortly.

The existence of a Bayesian equilibrium is an immediate consequence of the existence of Nash equilib-
rium.

2.1 An Example of Notation

You are player 1 and you are playing with two opponents,A andB. Each of them has two types. Player
A can be eithert1

A with probabilitypA or t2
A with probability1 � pA, and player be can be eithert1

B with
probabilitypB or t2

B with probability1 � pB . Each of these types has two actions at his disposal. PlayerA

can choose eithera1 or a2, and playerB can chooses eitherb1 or b2. You can choose from actionsc1; c2,
andc3 and you can be one of two types,�1 or �2.

We let player 1 be playeri and use Definition 1. First define��i , the set of all possible combination
of opponent types. Since there are two opponents with two types each, there are four combinations to
consider:

‚�1 D
˚�

t1
A; t1

B

�

;
�

t1
A; t2

B

�

;
�

t2
A; t1

B

�

;
�

t2
A; t2

B

�	

Of course,‚1 D
˚

�1; �2
	

. For each�1 2 ‚1, we have to defines1.�1/ as the strategy that maximizes
player 1’s payoff given what the opponents do when we consider all possible combinations of opponents
types,‚�i .

Note that the probabilities associated with each type of opponent allow player1 to calculate the prob-
ability of a particular combination being realized. Since the two player types areuncorrelated, the joint
probabilities are just the multiple of each individual probability, which gives us the following probabilities
p.��1j�1/:

p.t1
A; t1

B/ D pApB p.t2
A; t1

B/ D .1 � pA/pB

p.t1
A; t2

B/ D pA.1 � pB/ p.t2
A; t2

B/ D .1 � pA/.1 � pB/

where we suppressed the conditioning on�1 because the realizations are also independent from player 1’s
own type.

We now fix a strategy profile for the other two players to check player 1’s optimal strategy for that profile.
The players are using type-contingent strategies themselves. Given the number of available actions, the
possible (pure) strategies aresA.t1

A/ D sA.t2
A/ 2 fa1; a2g, andsB.t1

B/ D sB.t2
B/ 2 fb1; b2g. So, suppose

we want to find player 1’s best strategy against the profile where both types of playerA choose the same
action,sA.t1

A/ D sA.t2
A/ D a1, but the two types of playerB choose different actions,sB.t1

B/ D b1, and
sB.t2

B/ D b2.
We have to calculate the summation over all��1, of which there are four. For each of these, we calculate

the probability of this combination of opponents occurring (we did this above)and then multiply it by the
payoff player 1 expects to get from his strategy if he is matched with these particular types of opponents.
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This gives the expected payoff of player 1 from following his strategy against opponents of the particular
type. Once we add all the terms, we have player 1’s expected payoff from his strategy.

So, suppose we want to calculate player 1’s expected payoff from playing s1.�1/ D c1:

u1

�

c1; sA.t1
A/; sB.t1

B/
�

p.t1
A; t1

B/ C u1

�

c1; sA.t1
A/; sB.t2

B/
�

p.t1
A; t2

B/

C u1

�

c1; sA.t2
A/; sB.t1

B/
�

p.t2
A; t1

B/ C u1

�

c1; sA.t2
A/; sB.t2

B/
�

p.t2
A; t2

B/;

or simply:

u1 .c1; a1; b1/ pApB C u1 .c1; a1; b2/ pA.1 � pB/

C u1 .c1; a1; b1/ .1 � pA/pB C u1 .c1; a1; b2/ p.1 � pA/.1 � pB/:

We would then do this for actionsc2 andc3, and then pick the action that yields the highest payoff from
the three calculations. This is the arg max strategy. That is, it is the strategy that maximizes the expected
utility.5 This yields type�1 the best response to the strategy profile specified above.

We shall have to find the optimal response to this strategy profile if player 1 is of type�2. We then have
to find playerA’s and playerB ’s optimal strategies given what they know about the other players. Once
all of these best responses are found, we can match them to see which constitute profiles with strategies
that are mutual best responses. That is, we then proceed as before,when we found best responses and
equilibria in normal form games.

2.2 From Common Priors to Uncommon Posteriors

The definition of a Bayesian game requires that players start with acommon prior beliefabout the possible
distribution over the chance moves (“choices” by Nature). Once each player privately learns his own type,
it is possible that this information also conveys something about the probabilitiesof the other players’
types. If this is the case, then not only the player’sposterior beliefabout his own type will be different
from the estimates of the other players about him, but his beliefs about the other players will also be
different from his priors.

Consider first an example, in which learning one’s own type does not give players any additional insight
into the types of the others. Imagine there are two players, player 1 and player 2, and that for each
player there are two possible types. Playeri ’s possible types areti 2 f�i ; � 0

ig. Suppose that the types are
independently distributedwith Pr.t1 D �1/ D p and Pr.t2 D �2/ D q. This assumption means that after
learning one’s own type, players retain their priors about the type of the other player. For instance, in a
crisis bargaining model, the type might be a player’s valuation of the issue, which has nothing to do with
how much the other player values it. In this case, for a given strategy profile .s�

1 ; s�
2 /, the expected payoff

of player 1 of type�1 is simply:

qu1.s�
1 .�1/; s�

2 .�2/j�1; �2/ C .1 � q/u1.s�
1 .�1/; s�

2 .� 0
2/j�1; � 0

2/;

and for a given mixed strategy profile.��
1 ; ��

2 /, the expected payoff of player 1 of type�1 is:

q
X

a2A

��
1 .a1j�1/��

2 .a2j�2/u1.a1; a2j�1; �2/ C .1 � q/
X

a2A

��
1 .a1j�1/��

2 .a2j� 0
2/u1.a1; a2j�1; � 0

2/:

5Unlike the max of an expression which denotes the expression’s maximumwhen the expression is evaluated, the arg max
operator finds theparameter(s), for which the expression attains its maximum value. In our case, the arg max simply instructs us
to pick the strategy that yields the highest expected payoff when matched against the profile of opponent’s strategies.
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In each case, we simply used the prior beliefs about the possible types of player 2 because player 1’s
knowledge of his own type did not tell him anything new about player 2’s type. A Bayesian equilibrium
will consist of four type-contingent strategies, one for each type of each player. Some equilibria may
depend on particular values ofp andq, and others may not.

Imagine now that the types of players are correlated. For instance, in a crisis bargaining model a player’s
type could be his probability of winning the war. If there is one true underlying probability of victory for
a player, then learning something about one’s own likelihood of victory alsoconveys something about the
opponent’s type. Suppose that in our example the types occur in combinations with prior probabilities as
shown in Fig. 5 (p. 11). These are common knowledge.

Player 1’s type

Player 2’s type
�2 � 0

2

�1
1=6 1=3

� 0
1

1=3 1=6

Figure 5: Prior Distribution over the Types.

Suppose now that player 1 learns that his type is�1. What should his belief about player 2’s type be?
The prior distribution defines the joint probabilities Pr.ti \ t�i /, which in turn gives the unconditional
probabilities like Pr.t1 D �1/ D Pr.t1 D �1 \ t2 D �2/ C Pr.t1 D �1 \ t2 D � 0

2/ D 1=6 C 1=3 D 1=2. The
conditional probability formula (Bayes rule) yields:

Pr.t2 D �2jt1 D �1/ D Pr.t1 D �1 \ t2 D �2/

Pr.t1 D �1/
D

1=6

1=2
D 1=3:

In other words, upon learning that his type is�1, player 1 must update to believe that the probability that
player 2’s type is�2 is 1/3 from his prior belief that it was1/2. The other posterior beliefs are defined
analogously.

3 Some Simple Games

3.1 Myerson’s Exercise 3.5

Two players are not sure which of the two games, whose payoff matrices are shown in Fig. 6 (p. 11),
is being played. It is common knowledge that the probability that the game is Game Ais 0:9, and the
information is symmetric (that is, neither player knows anything that the other player does not know).

Player 1

Player 2
L R

U 2; 2 �2; 0

D 0; �2 0; 0

Game A (0:9)

Player 1

Player 2
L R

U 0; 2 1; 0

D 1; �2 2; 0

Game B (0:1)

Figure 6: Myerson’s Exercise.

Unlike our earlier example, where player 1 knows his own type, in this game hedoes not (note that
player 2’s payoffs are the same in both games). This actually makes the game even easier to solve because
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after the initial move by Nature that selects the game, each player has only oneinformation set. The
expected payoffs are:

U1.U; L/ D 2.:9/ C 0.:1/ D 1:8 U2.U; L/ D 2.:9/ C 2.:1/ D 2

U1.U; R/ D �2.:9/ C 1.:1/ D �1:7 U2.U; R/ D 0

U1.D; L/ D 0.:9/ C 1.:1/ D 0:1 U2.D; L/ D �2

U1.D; R/ D 0.:9/ C 2.:1/ D 0:2 U2.D; R/ D 0:

The resulting payoff matrix for the Bayesian game is shown in Fig. 7 (p. 12).

Player 1

Player 2
L R

U 1:8; 2 �1:7; 0

D 0:1; �2 0:2; 0

Figure 7: The Strategic Form of the Game from Fig. 6 (p. 11).

There are two Nash equilibria in pure strategies,hU; Li andhD; Ri, and a mixed strategy equilibrium
h1=2ŒU �; 19=36ŒL�i.

This is an interesting result because in two of these equilibria, player 2 choosesL with positive prob-
ability. If you look back at the original payoff matrices in Fig. 6 (p. 11), thismay surprise you because
hD; Ri is a Nash equilibrium in both separate games (it is the unique equilibrium in Game B). On the other
hand, the result is perhaps not surprising becausehU; Li in Game A is Pareto-dominant, and because of
the very high likelihood that this game is the one being played it is also the Pareto-dominant outcome in
the Bayesian game.

Another interesting aspect of this game is that if we relax the common knowledgeassumption (about the
probabilities with which the games are played), then there will be no Bayesian equilibrium where player 2
would chooseL. (This is a variant of Rubinstein’s electronic mail game.)

3.2 The Lover-Hater Game

Suppose that player 2 has complete information and two types,L andH . TypeL loves going out with
player 1 whereas typeH hates it. Player 1 has only one type and is uncertain about player 2’s type and
believes the two types are equally likely. We can describe this formally as a Bayesian game:

� Players:N D f1; 2g

� Actions: A1 D A2 D fF; Bg

� Types:‚1 D fxg, ‚2 D fl; hg

� Beliefs: p1.l jx/ D p1.hjx/ D 1=2, p2.xjl/ D p2.xjh/ D 1

� Payoffs:u1; u2 as described in Fig. 8 (p. 13).

We shall solve this game using two different methods.
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F B

F 2; 1 0; 0

B 0; 0 1; 2

Player 2’s type isL

f b

F 2; 0 0; 2

B 0; 1 1; 0

Player 2’s type isH

Figure 8: The Lover-Hater Battle of the Sexes.

3.2.1 Solution: Conversion to Strategic Form

We can easily convert this to strategic form, as shown in Fig. 9 (p. 13). It isimmediately clear thatBb

strictly dominatesFf for player 2, so she will never use the latter in any equilibrium. Finding the PSNE
is easy by inspection:hF; F bi. We now look for MSNE. Observe that player 2 will always playBb

with positive probability in every MSNE. To see this, suppose that there exists some MSNE, in which
�2.Bb/ D 0. But if she does not playBb, thenF strictly dominatesB for player 1, so he will chooseF ,
to which player 2’s best response isF b. That is, we are back in the PSNEhF; F bi, and there’s no mixing.

Player 1

Player 2
Ff F b Bf Bb

F 2; 1=2 1; 3=2 1; 0 0; 1

B 0; 1=2 1=2; 0 1=2; 3=2 1; 1

Figure 9: The Lover-Hater Game in Strategic Form.

We conclude that in any MSNE,�2.Bb/ > 0. We now have three possibilities to consider, depending
on which of the remaining two pure strategies she includes in the support of her equilibrium strategy. Let
p denote the probability that player 1 choosesF , and use the shortcutsq1 D �2.F b/, q2 D �2.Bf /, and
q3 D �2.Bb/. We now examine each possibility separately:

� Supposeq1 D 0 andq2 > 0, which impliesq3 D 1 � q2. Since player 2 is willing to mix between
Bf andBb, her expected payoffs from these pure strategies must be equal. SinceU2.p; Bb/ D 1

and U2.p; Bf / D .3=2/.1 � p/, this implies1 D 3.1 � p/=2 ) p D 1=3. That is, player 1
must be willing to mix too. This means the payoffs from his pure strategies must beequal. Since
U1.F; q2/ D q2 andU1.B; q2/ D .1=2/q2 C 1.1 � q2/, this impliesq2 D .1=2/q2 C 1 � q2 ) q2 D
2=3. We only need to check thatq1 D 0 is rational, which will be the case ifU2.p; F b/ � U2.Bb/.
SinceU2.p; F b/ D .3=2/p D 1=2 andU2.Bb/ D 1, this inequality holds. Therefore, we do have
a MSNE:hp D 1=3; .q2 D 2=3; q3 D 1=3/i. In this MSNE, player 1 choosesF with probability 1=3

and player 2 mixes betweenBf andBb; that is, she choosesB if she is theL type, and choosesf
with probability 2=3 if she is theH type.

� Supposeq1 > 0 andq2 D 0, which impliesq3 D 1 � q1. Since player 2 is willing to mix, it follows
thatU2.p; F b/ D .3=2/p D 1 D U2.p; Bb/. This impliesp D 2=3, so player 1 must be mixing too.
For him to be willing to do so, it must be the case that his payoffs from the purestrategies are equal.
SinceU1.F; q2/ D q1 andU1.B; q2/ D .1=2/q1 C1.1�q1/, this impliesq1 D 2=3. We only need to
check if player 2 would be willing to leave outBf . SinceU2.p; Bf / D .3=2/p D 1 D U2.p; Bb/,
including that strategy will not improve her expected payoff. Therefore, we do have another MSNE:
hp D 2=3; .q1 D 2=3; q3 D 1=3/i. In this MSNE, player 1 choosesF with probability 2=3 and player
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2 mixes betweenF b andBb; that is, she choosesF with probability 1=3 if she is theL type, and
choosesb if she is theH type.

� Supposeq1 > 0 and q2 > 0. Since player 2 is willing to mix, it follows thatU2.p; F b/ D
U2.p; Bf / D U2.p; Bb/ D 1. SinceU2.p; F b/ D .3=2/p D U2.p; Bf / D 3=2.1 � p/, it follows
that p D 1=2. However, fromU2.p; Bf / D U2.p; Bb/ we obtain.3=2/.1 � 1=2/ D 3=4 < 1 D
U2.p; Bb/, a contradiction. Therefore there is no such MSNE.

We conclude that this game has three equilibria, one in pure strategies and theothers in mixed.

3.2.2 Solution: Best Responses

Since player 1 has only one type, we suppress all references to his typefrom now on. Let’s begin by
analyzing player 2’s optimal behavior for each of the two types. Letp denote the probability that player
1 choosesF , q1 denote the probability that theL type choosesF , andq2 denote the probability that the
H type choosesf . Observe thatq1 andq2 do not mean the same thing they did in the previous method
(where they designated probabilities for pure strategies). In other words, in the strategic-form method,
these were elements of a mixed strategy. Here, they are elements of a behavioral strategy.

Let’s derive the best response for player 2. If she’s typeL, the expected utility from playingF is
UL.p; F / D p, while the expected utility from playingB is UL.p; B/ D 2.1 � p/. Therefore, she will
chooseF wheneverp � 2.1 � p/ ) p � 2=3. This yields the best response:

BRL.p/ D

8

ˆ

<

ˆ

:

q1 D 1 if p > 2=3

q1 2 Œ0; 1� if p D 2=3

q1 D 0 if p < 2=3

If she is of typeH , the expected payoffs areUH .p; F / D 1 � p andUH .p; B/ D 2p. Therefore, she will
chooseF whenever1 � p � 2p ) p � 1=3. This yields the best response:

BRH .p/ D

8

ˆ

<

ˆ

:

q2 D 1 if p < 1=3

q2 2 Œ0; 1� if p D 1=3

q2 D 0 if p > 1=3

Finally, we compute the expected payoffs for player 1:

U1.F; q1q2/ D .1=2/ Œ2q1 C 0.1 � q1/� C .1=2/ Œ2q2 C 0.1 � q2/� D q1 C q2

U1.B; q1q2/ D .1=2/ Œ0q1 C 1.1 � q1/� C .1=2/ Œ0q2 C 1.1 � q2/� D 1 � .q1 C q2/=2:

Hence, choosingF is optimal wheneverq1 C q2 � 1 � .q1 C q2/=2 ) q1 C q2 � 2=3. This yields player
1’s best response:

BR1.q1q2/ D

8

ˆ

<

ˆ

:

p D 1 if q1 C q2 > 2=3

p 2 Œ0; 1� if q1 C q2 D 2=3

p D 0 if q1 C q2 < 2=3

We now must find a triple.p; q1; q2/ such that player 1’s strategy is a best response to the strategies of
both types of player 2 and each type of player 2’s strategy is a best response to player 1’s strategy. Let’s
check for various types of equilibria.
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Can it be the case that player 1 uses a pure strategy in equilibrium? There are two cases to consider.
Supposep D 0, which impliesq1 C q2 < 2=3 from BR1. We now obtainq1 D 0 from BRL andq2 D 1

from BRH , which meansq1 C q2 D 1, a contradiction. Hence, there is no such equilibrium.
Suppose nowp D 1, which impliesq1 C q2 > 2=3. We now obtainq1 D 1 from BRL andq2 D 0

from BRH , which meansq1 C q2 D 1. This satisfies the requirement for player 1’s strategy to be a best
response. Therefore, we obtain a pure-strategy Bayesian equilibrium:hF; F bi.

In all remaining solutions, player 1 must mix in equilibrium. Since he is willing to mix,BR1 implies
thatq1 Cq2 D 2=3 (otherwise he’d play a pure strategy). This immediately means that it cannot be the case
that player 2 chooses the fight, whatever her type may be. To see this, notethat if some type goes to the
fight for sure,q1 C q2 � 1, which will contradict the requirement that allows player 1 to mix. Therefore,
q1 < 1 andq2 < 1. It also cannot be the case that neither type goes to the fight because that would imply
q1 C q2 D 0, which also cannot be true in a MSNE. Therefore, eitherq1 > 0, or q2 > 0, or both. Let’s
consider each separately:

� Supposeq1 D 0 andq2 > 0: sinceH is willing to mix, BRH implies thatp D 1=3 and since
q1 D 0, BRL implies p < 2=3. Therefore,p D 1=3 will make these strategies best responses.
To get player 1 to mix, it has to be the case thatq2 D 2=3. This yields the following MSNE:
hp D 1=3; .q1 D 0; q2 D 2=3/i. In this equilibrium, player 1 choosesF with probability 1=3, player
2 picksB if she’s theL type and picksf with probability 2=3 if she is theH type.

� Supposeq1 > 0 and q2 D 0: sinceL is willing to mix, BRL implies thatp D 2=3 and since
q2 D 0, BRH implies thatp > 1=3. Therefore,p D 2=3 will make these strategies best re-
sponses. To get player 1 to mix, it has to be the case thatq1 D 2=3. This yields another MSNE:
hp D 2=3; .q1 D 2=3; q2 D 0/i. In this equilibrium, player 1 choosesF with probability 2=3, player
2 picksF with probability 2=3 if she’s theL type and picksb if she is theH type.

� Supposeq1 > 0 andq2 > 0: sinceL is willing to mix, BRL implies thatp D 2=3 but sinceH is
also willing to mix,BRH implies thatp D 1=3, a contradiction. Therefore, there is no such MSNE.

This exhausts the possibilities, and voilà! We conclude that the game has threeequilibria, one in pure
strategies and two in mixed strategies. Clearly, these solutions are the same we found with the other
method.

Which method should you use? Whatever works for you! In general, however, the best-response method
is often more convenient despite the apparent difficulty in multiplying the types whose responses must be
considered. This is because when one is considering the best responses for each type, the strategies for all
other types are held constant.

3.3 The Market for Lemons

If you have bought or sold a used car, you know something about markets with asymmetric information.
Typically, the seller knows far more about the car he is offering than the buyer. Generally, buyers face a
significant informational disadvantage. As a result, you might expect thatbuyers will tend not to do very
well in the market, making them cautious and loath to buy used cars, in turn makingsellers worse off when
the market fails due to lack of demand.

Let’s model this! Suppose you, the buyer, are in the market for a used car. You meet me, the seller,
through an add in thePenny Pincher(never a good place to look for a good car deal), and I offer you an
attractive 15-year oldFirebird for sale. You love the car, it has big fat tires, it peels rubber when you hit
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the gas, and it’s souped up with a powerful 6-cylinder engine. It also sounds cool and has a red light in the
interior. You take a couple of rides around the block and it handles like a dream.6

Then you suddenly have visions of the souped up engine exploding and blowing you up to smithereens,
or perhaps a tire getting loose just as you screech around that particularly dangerous turn on US-1. In any
case, watching the fire-fighters dowse your vehicle while you cry at the curb or watching said fire-fighters
scrape you and your car off the rocks, is not likely to be especially amusing. So you tell me, “The car
looks great, but how do I know it’s not a lemon?”

I, being completely truthful and honest as far as used car dealers can be, naturally respond with “Oh!
I’ve taken such good care of it. Here’re are all the receipts from the regular oil changes. See? No receipts
for repairs to the engine because I havenever had problemswith it! It’s a peach, trust me.”

You have, of course, taken my own course on repeated games and so say, “A-ha! But you will not deal
with me in the future again after the sale is complete, and so you have no interestin cooperating today
because I cannot punish you tomorrow for not cooperating today! Youwill say whatever you think will
get me to buy the car.”

I sigh (Blasted game theory! It was so much easier to cheat people before.) and tell you, “Fair enough.
TheBlue Bookvalue of the car isv > 0 dollars. Take a look at the car, take a couple of more rides around
the block if you wish and then decide whether you are willing to pay theBlue Bookprice and I will decide
whether to offer you the car at that price.”

We shall assume that if a car is peach, it is worthB (you, the buyer) $3,000 and worthS (me, the seller)
$2,000. If it is a lemon, then it is worth $1,000 toB and $0 toS . In each case, your valuation is higher
than mine, so under complete information trade should occur with the surplus of$1,000 divided between
us. However, there is asymmetric information. I know the car’s condition, while you only estimate that
the likelihood of it being a peach isr 2 .0; 1/. Each of us has two actions, to trade or not trade at the
market pricev > 0. The market price isv < $3; 000, so a trade is, in principle, possible. (If the price
were higher, the buyer would not be willing to purchase the peach even if he knew for sure that it was a
peach.) We simultaneously announce what we are going to do. If we both elect to trade, then the trade
takes place. Otherwise, I keep the car and you go home to deplore the evils of simultaneous-moves games.
The situation is depicted in Fig. 10 (p. 16) with rows for the buyer and columnsfor the seller (payoffs in
thousands).

B

S

T N

T 3 � v; v 0; 2

N 0; 2 0; 2

peach

B

S

t n

T 1 � v; v 0; 0

N 0; 0 0; 0

lemon

Figure 10: The Market for Lemons.

Let’s derive the best responses. HereS can be thought of as having two types,L if her car is a lemon,
andP if her car is a peach. Fix an arbitrary strategy for the buyer, letp denote the probability that he
elects to trade, and calculate seller’s best responses (the probability thatshe chooses trade) as a function of
this strategy. Letq1 denote the probability that a seller with a peach trades andq2 denote the probability
that a seller with a lemon trades.

The seller with a peach will getUP .p; T / D pv C 2.1 � p/ if she trades andUP .p; N / D 2 if she does
not trade. Therefore, she will trade wheneverpv C 2.1 � p/ � 2 ) p.v � 2/ � 0. This yields her best

6Any resemblance to the second car I drove in college is purely coincidental.

16



response:

BRP .p/ D

8

ˆ

<

ˆ

:

q1 D 1 if p > 0 andv > 2

q1 2 Œ0; 1� if p D 0 or v D 2

q1 D 0 if p > 0 andv < 2

The seller with a lemon will getUL.p; t/ D pv if she trades, andU2.p; n/ D 0 if she does not trade.
Therefore, she will trade wheneverpv � 0. Sincev > 0, this yields her best response:

BRL.p/ D
(

q2 D 1 if p > 0

q2 2 Œ0; 1� if p D 0

Observe, in particular, that for anyp > 0 (that is, whenever the buyer is willing to trade with positive
probability), she always puts the lemon on the market. Turning now to the buyer, we see that his expected
payoff from trading is:

UB.T; q1q2/ D .3 � v/rq1 C .1 � v/.1 � r/q2:

Since his expected payoff from not trading isUB.N; q1q2/ D 0, he will trade whenever.3 � v/rq1 C
.1 � v/.1 � r/q2 � 0. LettingR D r=.1 � r/ > 0, this yieldsR.3 � v/q1 � .v � 1/q2. Hence, the best
response is:

BRB.q1q2/ D

8

ˆ

<

ˆ

:

p D 1 if R.3 � v/q1 > .v � 1/q2

p 2 Œ0; 1� if R.3 � v/q1 D .v � 1/q2

p D 0 if R.3 � v/q1 < .v � 1/q2

As before, we must find a profile.p; q1; q2/, along with some possible restrictions onr , such that the
buyer strategy is a best-response to the strategies of the two types of sellers, and each seller type’s strategy
is a best response to the buyer’s strategy. We shall look for equilibria where trade occurs with positive
probability, that is wherep > 0.7 This immediately means that the seller with the lemon always trades in
equilibrium, soq2 D 1. Observe further that for the seller of the peach to mix in a trading equilibrium,
v D 2 is necessary. This is a knife-edge condition on theBlue Bookprice and the solution is not interesting
because it will not hold for anyv slightly different from 2. Therefore, we shall suppose thatv ¤ 2. This
immediately means that we only have two cases to consider, both in pure strategies: the seller with the
peach either trades or does not.

Supposeq1 D 0, so the seller with the peach never trades. Sincep > 0, this implies thatv < 2.
Looking at the condition inBRB.01/, we see that the best response isp D 0 if v > 1 andp D 1 if v < 1.
Since we are looking for a trade equilibrium, we conclude that ifv � 1, there exists an equilibrium in
which only the lemon is brought to the market; the seller with the peach stays out and the buyer obtains
the lemon at the low pricev < 1. The PSNE ishT; Nti.

Suppose nowq1 D 1, so both peaches and lemons are traded. Since the seller of the peach is willing to
trade, this meansv > 2. In other words, a necessary condition for the existence of this equilibrium is that
theBlue Bookprice of the car exceeds the seller’s valuation of the peach. (If it did not,he would never
trade at that price.) Looking now atBRB.11/, we find thatp D 1 wheneverR.3 � v/ > v � 1, which is
satisfied whenever:

R >
v � 1

3 � v
D x ) r >

x

1 C x
, r >

v � 1

2
>

1

2
;

7There is an equilibrium whereB buys with probability 0 and both types ofS sell with probability 0, but it is not terribly
interesting because it relies on knife-edge indifference conditions.
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where the last inequality follows fromv > 2. If this is satisfied, then the PSNE ishT; T ti. In other words,
this equilibrium exists only if the prior probability of the car being a peach is sufficiently high.

We conclude that if theBlue Bookprice is too low.v < 1/, then in equilibrium only the lemon is traded.
If, on the other hand, the price is sufficiently high.v > 2/, then in equilibrium both the lemon and the
peach are traded provided the buyer is reasonably confident that the car is a peach.r > 1=2/. If the price
is intermediate,1 < v < 2, then no trade will occur in equilibrium.8

The results are not very encouraging for the buyer: It is not possibleto obtain an equilibrium where
only peaches are traded and lemons are not. Whenever trade occurs, either both types of cars are sold, or
only the lemon is sold. Furthermore, ifr < 1=2, then only lemons are traded in equilibrium. Thus, with
asymmetric information markets can sometimes fail.

3.4 The Game of Chicken with Two Types

Consider the standard two-player game of Chicken, in which the drivers simultaneously choose whether to
continue (C ) or swerve (S ). If both swerve, both are chicken and get no respect but neither is harmed, so
their payoffs are 0 each. Ifi continues while�i swerves, theni neither is harmed buti gains respect with
a payoff ofR > 0, whereas�i is declared chicken with a payoff�R. If both continue, they split respect
but get themselves into an accident, which ends with punishment by their parents that imposes a personal
costk, so the individual payoffs to the teenagers areR=2 � k. Imagine now that the parents of each teen
can be either lenient or harsh, so that the costs they impose are either low,k D 0, or high,k D K, with
K > R. It is common knowledge that the parents are either lenient or harsh with equal probability.

We can think of each player being of two types,ti 2 flenient; harshg, depending on what parents they
have, so that the prior distribution of types is just1/4 for each pair, as shown in Fig. 11 (p. 18).

Player 1’s type

Player 2’s type
lenient harsh

lenient 1=4 1=4

harsh 1=4 1=4

Figure 11: Prior Distribution over the Types of Parents.

Each player knowing the type of their own parents tells them nothing about thetype of parents of the
other player. Thus, Pr.t�i D harshjti D harsh/ D Pr.t�i D harshjti D lenient/ D 1=2. This makes it
easy to calculate the expected payoffs for each type of teen. We shall dothis for player 1 since player
2’s payoffs are computed analogously. In each calculation, we write player 2’s strategy as a pair.aLaH /,
which represents what action she will take if she has lenient parents (aL) or harsh ones (aH ). If player 1
of typet1 continues, his expected payoffs will be:

U1.C; CC jt1/ D R=2 � k

U1.C; CS jt1/ D U1.C; SC jt1/ D .1=2/ .R=2 � k/ C .1=2/R D 3R=4 � k=2

U1.C; SS jt1/ D R

8To see this, observe thatv < 2 implies q1 D 0 because the seller of the peach will not bring it to the market. But then
R.3 � v/q1 D 0 < .v � 1/q1 for any value ofq1 > 0 becausev > 1. Therefore,p D 0, and the buyer is not willing to trade.
We can actually find equilibria withp D 0 andq1 > 0 andq2 > 0 as well. To see this, note that if the buyer is sure not to trade,
both types of sellers can mix withv < 2. Hence, any pair.q1; q2/ that satisfiesR.3 � v/q1 < .v � 1/q2 will actually work.
Obviously, it will have to be the case thatq1 < q2 for this to work; that is, the seller of the peach is less likely to trade than the
seller of the lemon. None of these equilibria are particularly illuminating beyond the fact that no trade occurs in any of them.
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Note that since player 1 swerves, no accident ever occurs, which means that no parental punishment is
inflicted, and so the payoffs are the same irrespective of type. Thus, if player 1 swerves, his expected
payoffs will be:

U1.S; CC / D �R

U1.S; CS/ D U1.S; SC / D .1=2/.0/ C .1=2/.�R/ D �R=2

U1.S; SS/ D 0:

We can now use these payoffs to construct the strategic form, where we note that theex anteexpected
payoff for player 1 (that is, before he learns his type) is just the expected payoff from each of his type-
contingent payoffs we just calculated above times their probability (which, you should recall, is1/2). For
instance, the expected payoff from the strategyCC (continue irrespective of type) againstCC for player
2 is:

U1.CC; CC / D .1=2/U1.C; CC jlenient/ C .1=2/U1.C; CC jharsh/ D R � K

2
;

whereas the payoff from the strategyCS against the same strategy for player 2 is:

U1.CS; CC / D .1=2/U1.C; CC jlenient/ C .1=2/U1.S; CC jharsh/ D �R

4
:

The corresponding payoffs against theCS strategy for player 2 are:

U1.CC; CS/ D .1=2/U1.C; CS jlenient/ C .1=2/U1.C; CS jharsh/ D 3R � K

4

U1.CS; CS/ D .1=2/U1.C; CS jlenient/ C .1=2/U1.S; CS jharsh/ D R

8
:

The payoff matrix of the resulting Bayesian game is shown in Fig. 12 (p. 19).

CC CS SC SS

CC R�K
2

; R�K
2

3R�K
4

; � R
4

3R�K
4

; � R
4

� K
2

R; �R

CS � R
4

; 3R�K
4

R
8

; R
8

R
8

; R
8

� K
4

R
2

; � R
4

SC � R
4

� K
2

; 3R�K
4

R
8

� K
4

; R
8

R
8

� K
4

; R
8

� K
4

R
2

; � R
4

SS �R; R � R
4

; R
2

� R
4

; R
2

0; 0

Figure 12: Game of Chicken with Incomplete Information.

Observe now thatCS strictly dominatesSS , so we can eliminateSS . With this strategy removed,CS

becomes strictly dominant overSC as well. We obtain the reduced form shown in Fig. 13 (p. 19).

CC CS

CC R�K
2

; R�K
2

3R�K
4

; �R
4

CS �R
4

; 3R�K
4

R
8

; R
8

Figure 13: Game of Chicken with Incomplete Information, Reduced Form.

Suppose first that the harsh punishment is sufficiently nasty relative to reputation:2K > 5R. Then each
player has a strictly dominant strategy,CS , so the game has a unique PSNE:hCS; CSi. Teenagers with
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lenient parents continue but those with harsh parents swerve. Before the game begins, we would expect
the probability of an accident to be

Pr.accident/ D Pr.Player 1 continues/ � Pr.Player 2 continues/

D
h

Pr.Player 1 continuesjt1 D lenient/ Pr.t1 D lenient/

C Pr.Player 1 continuesjt1 D harsh/ Pr.t1 D harsh/
i

�
h

Pr.Player 2 continuesjt2 D lenient/ Pr.t2 D lenient/

C Pr.Player 2 continuesjt2 D harsh/ Pr.t2 D harsh/
i

D
h

.1/.1=2/ C .0/.1=2/
i

�
h

.1/.1=2/ C .0/.1=2/
i

D 1=4:

Analogous calculations yield theex anteprobability distribution over outcomes in this PSNE, as shown in
Fig. 14 (p. 20).

Player 1

Player 2
continues swerves

continues 1=4 1=4

swerves 1=4 1=4

Figure 14: Probability Distribution over Outcomes in PSNE.

Observe that unlike the original Chicken game with complete information, the PSNE here generates
positive probabilities overall outcomes (much like the MSNE in the original). In particular, there is
a positive probability that disaster will occur even though each type is choosing a pure strategy. The
uncertainty comes from not knowing the other player’s type, which in turn encourages the teens with
lenient parents to run a risk of disaster in return for the possibility of a reputational gain. On the other
hand, the teens with harsh parents choose to avoid that risk and swerve but even for them there is a chance
that they will not suffer reputational losses.

The point that pure-strategy Nash equilibria in a game of incomplete informationgenerate unpredictabil-
ity about behaviors, which in turn generates a probability distribution over various outcomes that we would
normally only expect in mixed-strategy equilibria in games of complete information might lead one to won-
der: is there some relationship between PSNE in incomplete information games andMSNE in “similar”
complete information games? The answer, turns out, is positive, as we shall see in the next section.

Suppose now the harsh punishment is moderately nasty relative to reputation: 5R > 2K > 3R. Then,
we obtain the following best responses:

BRi D
(

CS if s�i D CC

CC if s�i D CS

That is, if the opponent is certain to continue (CC ), then the punishment is sufficiently harsh to deter
the teen who expects to be punished with it. However, if the risk is smaller because there’s a chance the
opponent will swerve (CS ), then this punishment is no longer sufficient as a deterrent, and even theteen
with harsh parents will choose to continue.
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3.5 Study Groups

Two players have to hand in a joint assignment, and simultaneously choose either to work hard (W ) or
to slack off (S ). Working involves incurring a costc 2 .0; 1/. The assignment is completed successfully
if at least one of the students works and fails otherwise. Students have private information about their
own valuation of a successfully completed assignment:v2

i , where eachvi is independently and uniformly
distributed over the intervalŒ0; 1�. These distributions are common knowledge. Each values a failed
assignment at 0.

This is a game with a continuum of types for each player. Writing the extensiveform will not be
particularly helpful, and writing the strategic form is impossible because eachplayer has an infinite number
of type-contingent strategies despite there being only two possible actions.(Recall that a strategy maps
the type to the action space,si .vi / ! fW; Sg.)

We do not knowa priori how types map into actions. Let us first consider type-contingent strategies;
that is, strategies that prescribe different actions for different subsets of types. Any such strategy for player
�i , let’s call it ��i , will generate a probability that this player will work, let’s call this!.��i / 2 .0; 1/,
where the open interval follows from the fact that some types work but others do not. This means that
from playeri ’s perspective, player�i will work with probability !.��i /, which allows us to calculate that
player’s expected payoffs:

Ui .W; ��i jvi / D v2
i � c and Ui .S; ��i jvi / D !.��i /v

2
i :

If in equilibrium some type is willing to work, then it must be thatUi .W; ��i jvi / � Ui .S; ��i jvi /, or

vi �
r

c

1 � !.��i /
:

Consider now some typeOvi > vi , and note that the above inequality must be strictly satisfied for that
type (the left-hand side increases while the right-hand side remains constant). This means that this higher
valuation type must be willing to work in that equilibrium as well. In other words, inany equilibrium with
type-contingent strategies, if some type of playeri works, then all higher-valuation types work as well.
This further implies that if some type shirks in equilibrium, then all lower-valuationtypes must shirk as
well. We can then infer, that in any such equilibrium there must be a type,v�

i , that is indifferent between
working and shirking. If��

�i is player�i ’s equilibrium strategy, then this type is defined as:

v�
i D

s

c

1 � !.��
�i /

: (1)

This result greatly simplifies our task because it means thatall equilibria in type-contingent strategies must
involve pure strategies of the form: “allvi � v�

i shirk, and allvi > v�
i work.” These strategies make it

easy to define the expectations of the players because the probability that the other player works is just the
probability that his valuation exceeds the threshold value:

!.��
�i / D Pr.v�i > v�

�i / D 1 � Pr.v�i � v�
�i / D 1 � v�

�i ;

where we used the distributional assumption thatv�i � U Œ0; 1�. Since (1) defines the threshold type for
playeri , we can substitute for the value of!.��

�i / D 1 � v�
�i to obtain the system of equations:

v�
i D

s

c

v�
�i

;
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which tells us that the threshold valuations must be the same:v�
i D v�

�i D v�. This should not be
surprising since we assumed that the valuation range, the cost, and the payoffs are the same. Substituting
this into any of the two equations in the system yields:

v� D 3
p

c:

We conclude that the equilibrium in type-contingent strategies is unique and the strategy for each playeri

is:

s�
i .vi / D

(

S if vi � 3
p

c

W otherwise:

What about non-contingent strategies where all types of a player choose the same action? Suppose playeri

works for sure in equilibrium. Player�i ’s best response is to shirk, but then low-valuation types of player
i do not want to work becausev2

i �c < 0 for all vi <
p

c. Therefore, there can be no such equilibrium. If,
on the other hand, playeri were sure to shirk, then player�i ’s best response is to work ifv�i >

p
c and

shirk otherwise. But this means that her strategy is type-contingent, and wejust derived the equilibrium
for this case. We conclude that the equilibrium we found is unique.

How does this compare to a complete information game with common knowledge valuations .v1; v2/,
whose payoff is shown in Fig. 15 (p. 22)?

Player 1

Player 2
W S

W v2
1 � c; v2

2 � c v2
1 � c; v2

2

S v2
1 ; v2

2 � c 0; 0

Figure 15: Study Groups with Complete Information.

If vi � p
c, then the unique equilibrium ishS; Si, and neither player works, so the assignment never

gets done. The costs of effort are just too high relative to how much players care about the assignment.
Since

p
c < 3

p
c, if these two types play the incomplete information game, neither will work either, and

the assignment will not be done. The (lack of) information changes nothing.
If vi � p

c but v�i >
p

c, then there is an asymmetric situation, in which playeri does not value
the assignment to put in any effort but player�i does, so the unique equilibrium involvessi D S and
s�i D W . What happens if two of these types play the incomplete information game? Clearly, vi will
shirk there as well. But what aboutv�i‹ There are two cases: ifv�i > 3

p
c, then he will contribute, so the

outcome would be the same as with complete information. However, ifv�i 2 .
p

c; 3
p

c�, then this type
would not contribute under incomplete information even though he would have done so with complete
information. The reason is that with complete information, this type knows for sure that shirking means
that the assignment will not be done, and he prefers to get it done. With incomplete information about
the other player, this type thinks that there is a positive probability that the other player will complete the
assignment, and so he attempts to free ride because his valuation is not sufficiently high to induce him to
ensure the completion of the assignment. In other words, in this situation coordination will fail because
of incomplete information, and the assignment will not get done. In retrospect, v�i will deeply regret not
putting in the effort.

If both players value the assignment highly,vi >
p

c, then there are multiple equilibria. As before,
there are the two asymmetric PSNE:hW; Si andhS; W i. No player who expects the other to do the work
has any incentive to work irrespective of their valuation of the assignment.As usual in these mixed-motive
games (players want to coordinate on the assignment getting done but disagree about who is going to do
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the work), there is also a MSNE. Since playeri is willing to mix, it follows thatUi .W; ��i / D Ui .S; ��i ,
or v2

i � c D v2
i ��i .W /, so:

��
�i .W / D vi � c

vi
:

In this equilibrium, there is a positive probability that the assignment will not be done because of coordi-
nation failure. This probability is

.1 � ��
1 .W //.1 � ��

2 .W // D c2

v1v2
2 .0; 1/:

If these types were to play under incomplete information, then there are several possibilities depending on
whether one or both of them meet the work threshold. If neither does,vi � 3

p
c, then they will shirk and the

assignment will fail with certainty, which is clearly worse than the MSNE. If, on the other hand, at least one
of them has a valuation that exceeds the threshold, then the assignment will be completed with certainty.
In other words, coordinating under incomplete information might help playersavoid coordination failure
because it reduces the incentive to free-ride in situations where either player would be willing to complete
the task.

4 Purification of Mixed Strategies: The Battle of the Sexes

Consider the following modification of the Battle of the Sexes: player 1 is unsure about player 2’s payoff
if they coordinate on going to the ballet, and player 2 is unsure about player1’s payoff if they coordinate
on going to the fight. That is, the player 1’s payoff in the.F; F / outcome is2 C �1, where�1 is privately
known to him; and player 2’s payoff in the.B; B/ outcome is2 C �2, where�2 is privately known to her.
Assume that both�1 and�2 are independent draws from a uniform distributionŒ0; x�.9 Formally,

� Players:N D f1; 2g;

� Actions: A1 D A2 D fF; Bg;

� Types:‚1 D ‚2 D Œ0; x�;

� Beliefs: p1.�2/ D p2.�1/ D 1=x (where we used the fact that the uniform probability density
function isf .x/ D 1=x when specified for the intervalŒ0; x�);

� Payoffs:u1; u2 as described in Fig. 16 (p. 23).

Player 1

Player 2
F B

F 2 C �1; 1 0; 0

B 0; 0 1; 2 C �2

Figure 16: Battle of the Sexes with Two-Sided Incomplete Information.

Each player has a continuum of types (‚i is infinite). When considering type-contingent pure strategies,
we shall look for a Bayesian equilibrium in which player 1 goes to the fight if�1 exceeds some threshold

9The choice of the distribution is not important but we do have in mind that these privately known values only slightly perturb
the payoffs.
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type,x1, and goes to the ballet otherwise, and player 2 goes to the ballet if�2 exceeds some threshold type,
x2, and goes to the fight otherwise. These threshold (or cut-point) strategies are quite simple: given an
interval of types, there exists a special type, the threshold, such that alltypes smaller than it do one thing,
and all types greater than it do another. With payoffs that are strictly monotonic in type (either always
increasing or decreasing), this means that the threshold type must be indifferent between the two actions.

Why are we looking for an equilibrium in such strategies? Because we can prove that any equilibrium
must, in fact, involve cut-point strategies. This follows from the fact that if inequilibrium some type�1

choosesF , then it must be the case that allO�1 > �1 must also be choosingF . We can prove this by
contradiction. Take some Bayesian equilibrium and some�1 whose optimal strategy isF . Now take some
O�1 > �1 and suppose that his optimal strategy isB. We shall see that this leads to a contradiction. Since
�1 choosesF in equilibrium,

U1.F; ��
2 j�1/ D .2 C �1/��

2 .F / � .1/.1 � ��
2 .F // D U1.B; ��

2 j�1/:

Furthermore, sinceO�1 choosesB in equilibrium, it follows that:

U1.B; ��
2 j O�1/ D .1/.1 � ��

2 .F // � .2 C O�1/��
2 .F / D U1.F; ��

2 j O�1/:

Putting these two inequalities together yields:.2 C �1/��
2 .F / � .2 C O�1/��

2 .F /. If ��
2 .F / D 0, player

1’s best response isB regardless of type, which contradicts the supposition that�1 choosesF . Therefore,
it must be the case that��

2 .F / > 0. We can therefore simplify the above inequality to obtain2 C �1 �
2 C O�1 ) �1 � O�1. However, this contradictsO�1 > � . We conclude that if some type of player 1 chooses
F in equilibrium, then so must all higher types. A symmetric argument establishes that if some type of
player 2 choosesB in equilibrium, then so must all higher types. In other words, players must beusing
cut-point strategies in any equilibrium.

Let’s now go back to solving the game. We shall denote the (yet unknown) threshold type for playeri
by xi , so the equilibrium probability of choosing the favorite entertainment is PrŒ�i > xi �. For simplicity
(and with slight abuse of notation), let�1.�1/ denote the probability that player 1 goes to the fight, that is:

�1.�1/ D PrŒ�1 > x1� D 1 � PrŒ�1 � x1� D 1 � x1

x
:

Similarly, the probability that player 2 goes to the ballet is

�2.�2/ D PrŒ�2 > x2� D 1 � PrŒ�2 � x2� D 1 � x2

x
:

Suppose the players play the strategies just specified. We now want to findx1; x2 that make these strategies
a Bayesian equilibrium. Given player 2’s strategy, player 1’s expected payoffs from going to the fight and
going to the ballet are:

E Œu1.F j�1; �2/� D .2 C �1/.1 � �2.�2// C .0/�2.�2/ D x2

x
.2 C �1/

E Œu1.Bj�1; �2/� D .0/.1 � �2.�2// C .1/�2.�2/ D 1 � x2

x

Going to the fight is optimal if, and only if, the expected utility of doing so exceeds the expected utility of
going to the ballet:

E Œu1.F j�1; �2/� � E Œu1.Bj�1; �2/�

x2

x
.2 C �1/ � 1 � x2

x

�1 � x

x2
� 3:
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Clearly, any type for whom this inequality is strict is going to the fight. This meansthat thesmallesttype
that could go to the fight is the one, for whom it holds with equality. We shall call the type that’s indifferent
between going to either entertainment, thethresholdtype: x1 D x=x2 � 3. Player 2’s expected payoffs
from going to the ballet and going to the fight given player 1’s strategy are:

E Œu2.Bj�1; �2/� D .0/�1.�1/ C .2 C �2/.1 � �1.�1// D x1

x
.2 C �2/

E Œu2.F j�1; �2/� D .1/�1.�1/ C .0/.1 � �1.�1// D 1 � x1

x

and so going to the ballet is optimal if and only if:

E Œu2.Bj�1; �2/� � E Œu2.F j�1; �2/�

x1

x
.2 C �2/ � 1 � x1

x

�2 � x

x1
� 3:

Let x2 D x=x1 � 3 denote the threshold type for player 2. We now have the two threshold types, so we
solve the following system of equations:

x1 D x=x2 � 3

x2 D x=x1 � 3:

The solution isx1 D x2 andx2
2 C 3x2 � x D 0. We now solve the quadratic, whose discriminant is

D D 9 C 4x, for x2. The solution is:

x1 D x2 D �3 C
p

9 C 4x

2
:

The pair of strategies:

s1.�1/ D
(

F if �1 > x1

B if �1 � x1

s2.�2/ D
(

F if �2 � x2

B if �2 > x2

where

x1 D x2 D �3 C
p

9 C 4x

2
:

is thus a Bayesian equilibrium of this game.10 In this equilibrium, the probability that player 1 goes to the
fight equals the probability that player 2 goes to the ballet, and they are:

1 � x1

x
D 1 � x2

x
D 1 � �3 C

p
9 C 4x

2x
: (2)

It is interesting to see what happens as uncertainty disappears (i.e.x goes to 0). Taking the limit of the
expression in Equation 2 requires an application of the L’Hôpital rule:

lim
x!0

"

1 � �3 C
p

9 C 4x

2x

#

D 1 � lim
x!0

"

d
dx

.�3 C
p

9 C 4x/

d
dx

.2x/

#

D 1 � lim
x!0

2.9 C 4x/�1=2

2
D 2

3

10There are two other pure-strategy equilibria, in which both players choose the same entertainment irrespective of their types.
These replicate the two PSNE from the complete information game. Note also that the strategies do not specify what to do
for �i D xi because the probability of this occurring is 0 (the probability of any particular number drawn from a continuous
distribution is zero). It is customary that one of the inequalities, it does notmatter which, is weak in order to handle the case.
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In other words, as uncertainty disappears, the probabilities of player 1 playing F and player 2 playing
B both converge to2=3. But these areexactly the probabilities of the mixed strategy Nash equilibrium
of the complete information case!That is, we have just shown that as incomplete information disap-
pears, the players’ behavior in the pure-strategy Bayesian equilibrium of the incomplete-information game
approaches their behavior in the mixed-strategy Nash equilibrium in the original game of complete infor-
mation.

Harsanyi (1973) suggested that playerj ’s mixed strategy represents playeri ’s uncertainty aboutj ’s
choice of a pure strategy, and that playerj ’s choice in turn depends on a small amount of private informa-
tion. As we have just shown (and as can be proven for the general case), a mixed-strategy Nash equilibrium
can almost always be interpreted as a pure-strategy Bayesian equilibriumin a closely related game with a
little bit of incomplete information. The crucial feature of a mixed-strategy Nashequilibrium is not that
playerj chooses a strategy randomly, but rather that playeri is uncertain about playerj ’s choice. This
uncertainty can arise either because of randomization or (more plausibly) because of a little incomplete
information, as in the example above.

This is calledpurification of mixed strategies. That is, this example show Harsanyi’s result that it
is possible to “purify” the mixed-strategy equilibrium of almost any complete information game (except
some pathological cases) by showing that it is the limit of a sequence of pure-strategy equilibria in a game
with slightly perturbed payoffs. This a defense of mixed-strategies that does not require players to ran-
domize deliberately, and in particular it does not require them to randomize withthe required probabilities.
Recall that in MSNE the player is indifferent among every mixture with the support of the MSNE strategy.
There is no compelling reason why he should choose the randomization “required” by the equilibrium.
Harsanyi’s defense of mixed strategies gets around this problem very neatly because players here do not
randomize, it is just that their behavior can appear that way to the other asymmetrically informed players.
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